A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical stretch promotes tenocyte migration via chromatin remodelling-mediated nuclear morphology changes. | LitMetric

Mechanical stretch promotes tenocyte migration via chromatin remodelling-mediated nuclear morphology changes.

Wound Repair Regen

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, People's Republic of China.

Published: May 2023

Wound healing and function recovery of injured tendons are still a big challenge for orthopaedic surgery. Evidence in clinic shows that early controlled motion has significant favourable effects on tendon healing; however, the mechanisms involved in are not fully understood. In the present study, it was shown that an appropriate mechanical stretch (10% strain, 0.5 Hz for 1 h) evidently promotes rat tenocyte migration and nuclear morphology changes. The farther research discovered that mechanical stretch had no effect on Lamin A/C expression, but it could promote chromatin decondensation. Moreover, the histone modification plays an important role in mechanical stretch-mediated chromatin decondensation. Inhibition histone modification could inhibit mechanical stretch-promoted nuclear morphology changes and tenocyte migration. These results indicating that mechanical stretch may promote tenocyte migration via chromatin remodelling-mediated nuclear morphology changes, which contribute to a better understanding of the role of mechanical stretch on tenocyte migration and repair of injured tendon.

Download full-text PDF

Source
http://dx.doi.org/10.1111/wrr.13080DOI Listing

Publication Analysis

Top Keywords

mechanical stretch
20
tenocyte migration
20
nuclear morphology
16
morphology changes
16
migration chromatin
8
chromatin remodelling-mediated
8
remodelling-mediated nuclear
8
chromatin decondensation
8
histone modification
8
role mechanical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!