A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DARU-Net: A dual attention residual U-Net for uterine fibroids segmentation on MRI. | LitMetric

DARU-Net: A dual attention residual U-Net for uterine fibroids segmentation on MRI.

J Appl Clin Med Phys

State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.

Published: June 2023

Purpose: Uterine fibroid is the most common benign tumor in female reproductive organs. In order to guide the treatment, it is crucial to detect the location, shape, and size of the tumor. This study proposed a deep learning approach based on attention mechanisms to segment uterine fibroids automatically on preoperative Magnetic Resonance (MR) images.

Methods: The proposed method is based on U-Net architecture and integrates two attention mechanisms: channel attention of squeeze-and-excitation (SE) blocks with residual connections, spatial attention of pyramid pooling module (PPM). We did the ablation study to verify the performance of these two attention mechanisms module and compared DARU-Net with other deep learning methods. All experiments were performed on a clinical dataset consisting of 150 cases collected from our hospital. Among them, 120 cases were used as the training set, and 30 cases are used as the test set. After preprocessing and data augmentation, we trained the network and tested it on the test dataset. We evaluated segmentation performance through the Dice similarity coefficient (DSC), precision, recall, and Jaccard index (JI).

Results: The average DSC, precision, recall, and JI of DARU-Net reached 0.8066 ± 0.0956, 0.8233 ± 0.1255, 0.7913 ± 0.1304, and 0.6743 ± 0.1317. Compared with U-Net and other deep learning methods, DARU-Net was more accurate and stable.

Conclusion: This work proposed an optimized U-Net with channel and spatial attention mechanisms to segment uterine fibroids on preoperative MR images. Results showed that DARU-Net was able to accurately segment uterine fibroids from MR images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243339PMC
http://dx.doi.org/10.1002/acm2.13937DOI Listing

Publication Analysis

Top Keywords

uterine fibroids
16
attention mechanisms
16
deep learning
12
segment uterine
12
mechanisms segment
8
spatial attention
8
learning methods
8
dsc precision
8
precision recall
8
attention
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!