Closed-pig line breeding could change the genetic structure at a genome-wide scale because of the selection in a pig breeding population. We investigated the changes in population structure among generations at a genome-wide scale and the selected loci across the genome by comparing the observed and expected allele frequency changes in mycoplasma pneumonia of swine (MPS)-selected pigs. Eight hundred and seventy-four Landrace pigs, selected for MPS resistance without reducing average daily gain over five generations, had 37,299 single nucleotide polymorphisms (SNPs) and were used for genomic analyses. Regarding population structure, individuals in the first generation were the most widely distributed and then converged into a specific group, as they were selected over five generations. For allele frequency changes, 96 and 14 SNPs had higher allele frequency changes than the 99.9% and 99.99% thresholds of the expected changes, respectively. These SNPs were evenly spread across the genome, and a few of these selected regions overlapped with previously detected quantitative trait loci for MPS and immune-related traits. Our results indicated that the considerable changes in allele frequency were identified in many regions across the genome by closed-pig line breeding based on estimated breeding value.

Download full-text PDF

Source
http://dx.doi.org/10.1111/asj.13827DOI Listing

Publication Analysis

Top Keywords

allele frequency
16
frequency changes
12
landrace pigs
8
pigs selected
8
mycoplasma pneumonia
8
pneumonia swine
8
closed-pig breeding
8
genome-wide scale
8
population structure
8
changes snps
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!