The number of infections caused by antibiotic-resistant strains of bacteria is growing by the year. The pathogenic bacterial species and are among the high priority candidate targets for the development of new therapeutic antibacterial agents. One of the most promising antibacterial agents are bacteriophages. According to the WHO, two phage-based therapeutic cocktails and two medical drugs based on phage endolysins are currently undergoing clinical trials. In this paper, we describe the virulent bacteriophage iF6 and the properties of two of its endolysins. The chromosome of the iF6 phage is 156,592 bp long and contains two direct terminal repeats, each 2108 bp long. Phylogenetically, iF6 belongs to the genus, whose representatives are described as phages with a high therapeutic potential. The phage demonstrated a high adsorption rate; about 90% of iF6 virions attached to the host cells within one minute after the phage was added. Two iF6 endolysins were able to lyse enterococci cultures in both logarithmic and stationary growth phases. Especially promising is the HU-Gp84 endolysin; it was active against 77% of enterococci strains tested and remained active even after 1 h incubation at 60 °C. Thus, iF6-like enterococci phages appear to be a promising platform for the selection and development of new candidates for phage therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054541 | PMC |
http://dx.doi.org/10.3390/v15030767 | DOI Listing |
J Virol
December 2024
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, Beijing, China.
Unlabelled: Quorum sensing (QS) can regulate diverse critical phenotypic responses in (), enabling bacterial adaptation to external environmental fluctuations and optimizing population advantages. While there is emerging evidence of QS's involvement in influencing phage infections, our current understanding remains limited, necessitating further investigation. In this study, we isolated and characterized a novel phage designated as BUCT640 that infected PAO1.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands.
Metagenomics has revealed the incredible diversity of phages within the human gut. However, very few of these phages have been subjected to in-depth experimental characterization. One promising method of obtaining novel phages for experimental characterization is through induction of the prophages integrated into the genomes of cultured gut bacteria.
View Article and Find Full Text PDFMol Biol Res Commun
January 2025
Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan.
is a gram-negative bacterium that causes a diversity of diseases in numerous plants. Strategies to inhibit growth include protective procedures; however, controlling the disease is complicated due to its rapid spread. Several antimicrobial agents can prevent this disease, such as chemical compounds, biological agents, secondary metabolites, nanoparticles, bacteriophages, and antimicrobial peptides (AMPs).
View Article and Find Full Text PDFJ Glob Antimicrob Resist
December 2024
Pôle de Microbiologie, Institut Pasteur de Dakar, Sénégal; Faculté de Médecine, Pharmacie et Odontostomatologie, Université Cheikh Anta Diop, Dakar, Sénégal.
Background: Acinetobacter baumannii, particularly carbapenem-resistant strains (CRAB), poses a major concern in the fight against antimicrobial resistance (AMR), identified as a top-priority pathogen by the World Health Organization (WHO). A. baumannii has intrinsic resistance to several antibiotics, including penicillin, cephalosporins, chloramphenicol, and fosfomycin, but the development of AMR has led to the emergence of extremely drug-resistant and pan-resistant isolates.
View Article and Find Full Text PDFFront Immunol
January 2025
Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Rome, Italy.
Background: Mature T-cell neoplasms arise from the neoplastic transformation of a single T lymphocyte, and all cells in a neoplastic clone share the same V segment in the beta chain of the T-cell receptor (TCR). These segments may represent an innovative target for the development of targeted therapies.
Methods: A specific V segment of the TCR beta chain (TRBV5-1) was analyzed using bioinformatic tools, identifying three potential antigenic peptides.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!