Biomimetic Nanotechnology for SARS-CoV-2 Treatment.

Viruses

State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.

Published: February 2023

More than 600 million people worldwide have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the pandemic of coronavirus disease 2019 (COVID-19). In particular, new waves of COVID-19 caused by emerging SARS-CoV-2 variants pose new health risks to the global population. Nanotechnology has developed excellent solutions to combat the virus pandemic, such as ACE2-based nanodecoys, nanobodies, nanovaccines, and drug nanocarriers. Lessons learned and strategies developed during this battle against SARS-CoV-2 variants may also serve as inspiration for developing nanotechnology-based strategies to combat other global infectious diseases and their variants in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051120PMC
http://dx.doi.org/10.3390/v15030596DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 variants
8
biomimetic nanotechnology
4
sars-cov-2
4
nanotechnology sars-cov-2
4
sars-cov-2 treatment
4
treatment 600
4
600 people
4
people worldwide
4
worldwide infected
4
infected severe
4

Similar Publications

Genetic determinants of COVID-19 severity and mortality: Alu 287 bp polymorphism and , , expression in hospitalized patients.

PeerJ

January 2025

Departamento de genética, ecologia e evolução, Laboratório de biologia integrativa, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Background: The angiotensin-converting enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) are central human molecules in the SARS-CoV-2 virus-host interaction. Evidence indicates that may influence expression. This study aims to determine whether ACE1, ACE2, and TMPRSS2 mRNA expression levels, along with the ACE1 Alu 287 bp polymorphism (rs4646994), contribute to the severity and mortality of COVID-19.

View Article and Find Full Text PDF

The ongoing COVID-19 pandemic has triggered extensive research, mainly focused on identifying effective therapeutic agents, specifically those targeting highly pathogenic SARS-CoV-2 variants. This study aimed to investigate the antiviral efficacy and anti-inflammatory activity of herbal extracts derived from and , using a Golden Syrian hamster model infected with Delta, a representative variant associated with severe COVID-19. Hamsters were intranasally inoculated with the SARS-CoV-2 Delta variant and orally administered either vehicle control, , or extract at a dosage of 1000 mg/kg/day.

View Article and Find Full Text PDF

BackgroundThe potential impact of urban structure, as population density and proximity to essential facilities, on spatial variability of infectious disease cases remains underexplored.AimTo analyse the spatial variation of COVID-19 case intensity in relation to population density and distance from urban facilities (as potential contagion hubs), by comparing Alpha and Omicron wave data representing periods of both enacted and lifted non-pharmaceutical interventions (NPIs) in Málaga.MethodsUsing spatial point pattern analysis, we examined COVID-19 cases in relation to population density, distance from hospitals, health centres, schools, markets, shopping malls, sports centres and nursing homes by non-parametric estimation of relative intensity dependence on these covariates.

View Article and Find Full Text PDF

The global dissemination of SARS-CoV-2 led to a worldwide pandemic in March 2020. Even after the official downgrading of the COVID-19 pandemic, infection with SARS-CoV-2 variants continues. The rapid development and deployment of SARS-CoV-2 vaccines helped to mitigate the pandemic to a great extent.

View Article and Find Full Text PDF

The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!