A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fault Voiceprint Signal Diagnosis Method of Power Transformer Based on Mixup Data Enhancement. | LitMetric

A voiceprint signal as a non-contact test medium has a broad application prospect in power-transformer operation condition monitoring. Due to the high imbalance in the number of fault samples, when training the classification model, the classifier is prone to bias to the fault category with a large number of samples, resulting in poor prediction performance of other fault samples, and affecting the generalization performance of the classification system. To solve this problem, a method of power-transformer fault voiceprint signal diagnosis based on Mixup data enhancement and a convolution neural network (CNN) is proposed. First, the parallel Mel filter is used to reduce the dimension of the fault voiceprint signal to obtain the Mel time spectrum. Then, the Mixup data enhancement algorithm is used to reorganize the generated small number of samples, effectively expanding the number of samples. Finally, CNN is used to classify and identify the transformer fault types. The diagnosis accuracy of this method for a typical unbalanced fault of a power transformer can reach 99%, which is superior to other similar algorithms. The results show that this method can effectively improve the generalization ability of the model and has good classification performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054130PMC
http://dx.doi.org/10.3390/s23063341DOI Listing

Publication Analysis

Top Keywords

voiceprint signal
16
fault voiceprint
12
mixup data
12
data enhancement
12
number samples
12
fault
8
signal diagnosis
8
power transformer
8
based mixup
8
fault samples
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!