Inertial localisation is an important technique as it enables ego-motion estimation in conditions where external observers are unavailable. However, low-cost inertial sensors are inherently corrupted by bias and noise, which lead to unbound errors, making straight integration for position intractable. Traditional mathematical approaches are reliant on prior system knowledge, geometric theories and are constrained by predefined dynamics. Recent advances in deep learning, which benefit from ever-increasing volumes of data and computational power, allow for data-driven solutions that offer more comprehensive understanding. Existing deep inertial odometry solutions rely on estimating the latent states, such as velocity, or are dependent on fixed-sensor positions and periodic motion patterns. In this work, we propose taking the traditional state estimation recursive methodology and applying it in the deep learning domain. Our approach, which incorporates the true position priors in the training process, is trained on inertial measurements and ground truth displacement data, allowing recursion and learning both motion characteristics and systemic error bias and drift. We present two end-to-end frameworks for pose invariant deep inertial odometry that utilises self-attention to capture both spatial features and long-range dependencies in inertial data. We evaluate our approaches against a custom 2-layer Gated Recurrent Unit, trained in the same manner on the same data, and tested each approach on a number of different users, devices and activities. Each network had a sequence length weighted relative trajectory error mean ≤0.4594 m, highlighting the effectiveness of our learning process used in the development of the models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057007 | PMC |
http://dx.doi.org/10.3390/s23063217 | DOI Listing |
Sensors (Basel)
December 2024
SOTI Aerospace, SOTI Inc., Mississauga, ON L5N 8L9, Canada.
Indoor navigation is becoming increasingly essential for multiple applications. It is complex and challenging due to dynamic scenes, limited space, and, more importantly, the unavailability of global navigation satellite system (GNSS) signals. Recently, new sensors have emerged, namely event cameras, which show great potential for indoor navigation due to their high dynamic range and low latency.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Computer Science, Zurich University of Applied Sciences, 8400 Winterthur, Switzerland.
Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic scenarios without environmental control.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Vehicle and Transportation Engineering, Tsinghua University, Beijing 100083, China.
In response to the current situation of backward automation levels, heavy labor intensities, and high accident rates in the underground coal mine auxiliary transportation system, the mining trackless auxiliary transportation robot (MTATBOT) is presented in this paper. The MTATBOT is specially designed for long-range, space-constrained, and explosion-proof underground coal mine environments. With an onboard perception and autopilot system, the MTATBOT can perform automated and unmanned subterranean material transportation.
View Article and Find Full Text PDFInt J Rob Res
January 2025
Department of Earth and Space Science and Engineering, Lassonde School of Engineering, York University, Toronto, ON, Canada.
The York University Teledyne Optech (YUTO) Mobile Mapping System (MMS) Dataset, encompassing four sequences totaling 20.1 km, was thoroughly assembled through two data collection expeditions on August 12, 2020, and June 21, 2019. Acquisitions were performed using a uniquely equipped vehicle, fortified with a panoramic camera, a tilted LiDAR, a Global Positioning System (GPS), and an Inertial Measurement Unit (IMU), journeying through two strategic locations: the York University Keele Campus in Toronto and the Teledyne Optech headquarters in City of Vaughan, Canada.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical Engineering, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
In today's technologically advanced landscape, precision in navigation and positioning holds paramount importance across various applications, from robotics to autonomous vehicles. A common predicament in location-based systems is the reliance on Global Positioning System (GPS) signals, which may exhibit diminished accuracy and reliability under certain conditions. Moreover, when integrated with the Inertial Navigation System (INS), the GPS/INS system could not provide a long-term solution for outage problems due to its accumulated errors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!