The integration of antennas in composite structures is gaining popularity with advances in wireless communications and the ever-increasing demands for efficient smart structures. Efforts are ongoing to ensure that antenna-embedded composite structures are robust and resilient to inevitable impacts, loading and other external factors that threaten the structural integrity of these structures. Undoubtedly, the in situ inspection of such structures to identify anomalies and predict failures is required. In this paper, the microwave non-destructive testing (NDT) of antenna-embedded composite structures is introduced for the first time. The objective is accomplished using a planar resonator probe operating in the UHF frequency range (~525 MHz). High-resolution images of a C-band patch antenna fabricated on an aramid paper-based honeycomb substrate and covered with a glass fiber reinforced polymer (GFRP) sheet are presented. The imaging prowess of microwave NDT and its distinct advantages in inspecting such structures are highlighted. The qualitative as well as the quantitative evaluation of the images produced by the planar resonator probe and a conventional K-band rectangular aperture probe are included. Overall, the potential utility of microwave NDT for the inspection of smart structures is demonstrated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057986 | PMC |
http://dx.doi.org/10.3390/s23063200 | DOI Listing |
J Oral Implantol
January 2025
Department of Orthodontics and Pedodontics, Faculty of Dentistry, Van Lang University, Ho Chi Minh City, Vietnam.
The reverse scan technique offers several advantages, such as improvements of accuracy and visibility of critical anatomical structures, minimizing chair time, and providing better patient comfort. This was a case report successfully employing the reverse scan technique. A 72-year-old male patient desired to restore his teeth in both jaws, as he experienced difficulty eating and had never worn dentures.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
In composite structures, the precise identification and localization of damage is necessary to preserve structural integrity in applications across such fields as aeronautical, civil, and mechanical engineering. This study presents a deep learning (DL)-assisted framework for simultaneous damage localization and severity assessment in composite structures using Lamb waves (LWs). Previous studies have often focused on either damage detection or localization in composite structures.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Doctoral School of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independenței nr. 313, Sector 6, 060042 Bucureşti, Romania.
This review explores the integration of polymer materials into piezoelectric composite structures, focusing on their application in sensor technologies, and wearable electronics. Piezoelectric composites combining ceramic phases like BaTiO, KNN, or PZT with polymers such as PVDF exhibit significant potential due to their enhanced flexibility, processability, and electrical performance. The synergy between the high piezoelectric sensitivity of ceramics and the mechanical flexibility of polymers enables the development of advanced materials for biomedical devices, energy conversion, and smart infrastructure applications.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Collage of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
The curing distortion is a critical determinant of the quality of integrally manufactured composite structures, playing a pivotal role in the design and fabrication of composite. This paper presents two simplified methods in predicting the curing distortion for large-scale composite aircraft structures manufactured through the autoclave process. Firstly, the refined finite element models of the two simplified methods were developed.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
Hemp fibers, recognized for their breathability, specific strength, and ultraviolet resistance, are widely utilized in textile manufacturing and composite materials. Bio-degumming is a promising alternative technology to traditional chemical degumming that can be used to produce hemp fibers due to its eco-friendly nature. However, its lower efficiency has hindered its widespread adoption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!