To realize high-performance line of sight (LOS) stabilization control of the optronic mast under high oceanic conditions and big swaying movements of platforms, a composite control method based on an adaptive radial basis function neural network (RBFNN) and sliding mode control (SMC) is proposed. The adaptive RBFNN is used to approximate the nonlinear and parameter-varying ideal model of the optronic mast, so as to compensate for the uncertainties of the system and reduce the big-amplitude chattering phenomenon caused by excessive switching gain in SMC. The adaptive RBFNN is constructed and optimized online based on the state error information in the working process; therefore, no prior training data are required. At the same time, a saturation function is used to replace the sign function for the time-varying hydrodynamic disturbance torque and the friction disturbance torque, which further reduce the chattering phenomenon of the system. The asymptotic stability of the proposed control method has been proven by the Lyapunov stability theory. The applicability of the proposed control method is validated by a series of simulations and experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058664 | PMC |
http://dx.doi.org/10.3390/s23063182 | DOI Listing |
Sensors (Basel)
March 2023
Huazhong Institute of Electro-Optics, Wuhan National Laboratory for Optoelectronics, Wuhan 430223, China.
To realize high-performance line of sight (LOS) stabilization control of the optronic mast under high oceanic conditions and big swaying movements of platforms, a composite control method based on an adaptive radial basis function neural network (RBFNN) and sliding mode control (SMC) is proposed. The adaptive RBFNN is used to approximate the nonlinear and parameter-varying ideal model of the optronic mast, so as to compensate for the uncertainties of the system and reduce the big-amplitude chattering phenomenon caused by excessive switching gain in SMC. The adaptive RBFNN is constructed and optimized online based on the state error information in the working process; therefore, no prior training data are required.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!