A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Agricultural Robot-Centered Recognition of Early-Developmental Pest Stage Based on Deep Learning: A Case Study on Fall Armyworm (). | LitMetric

AI Article Synopsis

  • This study presents a method for detecting insect larvae using a stereo camera and deep learning, which can help farmers identify pests at early developmental stages, leading to better pest management.
  • The research utilizes advanced machine vision technology and deep learning algorithms on a custom dataset to improve pest detection accuracy while balancing smooth robot operation and precise localization.
  • Simulation results using CoppeliaSim and MATLAB/SIMULINK demonstrate the effectiveness of the system, achieving 99% classification accuracy and a 0.84 average precision for pest localization.

Article Abstract

Accurately detecting early developmental stages of insect pests (larvae) from off-the-shelf stereo camera sensor data using deep learning holds several benefits for farmers, from simple robot configuration to early neutralization of this less agile but more disastrous stage. Machine vision technology has advanced from bulk spraying to precise dosage to directly rubbing on the infected crops. However, these solutions primarily focus on adult pests and post-infestation stages. This study suggested using a front-pointing red-green-blue (RGB) stereo camera mounted on a robot to identify pest larvae using deep learning. The camera feeds data into our deep-learning algorithms experimented on eight ImageNet pre-trained models. The combination of the insect classifier and the detector replicates the peripheral and foveal line-of-sight vision on our custom pest larvae dataset, respectively. This enables a trade-off between the robot's smooth operation and localization precision in the pest captured, as it first appeared in the farsighted section. Consequently, the nearsighted part utilizes our faster region-based convolutional neural network-based pest detector to localize precisely. Simulating the employed robot dynamics using CoppeliaSim and MATLAB/SIMULINK with the deep-learning toolbox demonstrated the excellent feasibility of the proposed system. Our deep-learning classifier and detector exhibited 99% and 0.84 accuracy and a mean average precision, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056802PMC
http://dx.doi.org/10.3390/s23063147DOI Listing

Publication Analysis

Top Keywords

deep learning
12
stereo camera
8
pest larvae
8
classifier detector
8
pest
5
agricultural robot-centered
4
robot-centered recognition
4
recognition early-developmental
4
early-developmental pest
4
pest stage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!