A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep Learning-Based Wrist Vascular Biometric Recognition. | LitMetric

Deep Learning-Based Wrist Vascular Biometric Recognition.

Sensors (Basel)

Department of Electrical, Computer and Software Engineering, The University of Auckland, Auckland 1010, New Zealand.

Published: March 2023

The need for contactless vascular biometric systems has significantly increased. In recent years, deep learning has proven to be efficient for vein segmentation and matching. Palm and finger vein biometrics are well researched; however, research on wrist vein biometrics is limited. Wrist vein biometrics is promising due to it not having finger or palm patterns on the skin surface making the image acquisition process easier. This paper presents a deep learning-based novel low-cost end-to-end contactless wrist vein biometric recognition system. FYO wrist vein dataset was used to train a novel U-Net CNN structure to extract and segment wrist vein patterns effectively. The extracted images were evaluated to have a Dice Coefficient of 0.723. A CNN and Siamese Neural Network were implemented to match wrist vein images obtaining the highest F1-score of 84.7%. The average matching time is less than 3 s on a Raspberry Pi. All the subsystems were integrated with the help of a designed GUI to form a functional end-to-end deep learning-based wrist biometric recognition system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051641PMC
http://dx.doi.org/10.3390/s23063132DOI Listing

Publication Analysis

Top Keywords

wrist vein
24
deep learning-based
12
biometric recognition
12
vein biometrics
12
wrist
8
learning-based wrist
8
vascular biometric
8
vein
8
recognition system
8
deep
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!