Biodegradable magnesium-based implants offer mechanical properties similar to natural bone, making them advantageous over nonbiodegradable metallic implants. However, monitoring the interaction between magnesium and tissue over time without interference is difficult. A noninvasive method, optical near-infrared spectroscopy, can be used to monitor tissue's functional and structural properties. In this paper, we collected optical data from an in vitro cell culture medium and in vivo studies using a specialized optical probe. Spectroscopic data were acquired over two weeks to study the combined effect of biodegradable Mg-based implant disks on the cell culture medium in vivo. Principal component analysis (PCA) was used for data analysis. In the in vivo study, we evaluated the feasibility of using the near-infrared (NIR) spectra to understand physiological events in response to magnesium alloy implantation at specific time points (Day 0, 3, 7, and 14) after surgery. Our results show that the optical probe can detect variations in vivo from biological tissues of rats with biodegradable magnesium alloy "WE43" implants, and the analysis identified a trend in the optical data over two weeks. The primary challenge of in vivo data analysis is the complexity of the implant interaction near the interface with the biological medium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057053PMC
http://dx.doi.org/10.3390/s23063063DOI Listing

Publication Analysis

Top Keywords

magnesium alloy
12
biodegradable magnesium
8
near-infrared spectroscopy
8
optical data
8
cell culture
8
culture medium
8
medium vivo
8
optical probe
8
data analysis
8
vivo
6

Similar Publications

Boron nitride (BN), renowned for its exceptional optoelectrical properties, mechanical robustness, and thermal stability, has emerged as a promising two-dimensional (2D) material. Reinforcing AZ80 magnesium alloy with BN can significantly enhance its mechanical properties. To investigate and predict this enhancement during hot deformation, we introduce two independent modeling approaches a modified Johnson-Cook (J-C) constitutive model and an Artificial Neural Network (ANN).

View Article and Find Full Text PDF

Traveling waves of excitation arise from the spatial coupling of local nonlinear events by transport processes. In corrosion systems, these electro-dissolution waves relay local perturbations across large portions of the metal surface, significantly amplifying overall damage. For the example of the magnesium alloy AZ31B exposed to sodium chloride solution, we report experimental results suggesting the existence of a vulnerable zone in the wake of corrosion waves where local perturbations can induce a unidirectional wave pulse or segment.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is an engineered biomaterial that closely resembles the hard tissue composition of humans. Biological HA is commonly non-stoichiometric and features lower crystallinity and higher solubility than stoichiometric HA. The chemical compositions of these biomaterials include calcium (Ca), phosphorus (P), and trace amounts of various ions such as magnesium (Mg), zinc (Zn), and strontium (Sr).

View Article and Find Full Text PDF

A multifunctional quasi-solid-state polymer electrolyte with highly selective ion highways for practical zinc ion batteries.

Nat Commun

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

The uncontrolled dendrite growth and detrimental parasitic reactions of Zn anodes currently impede the large-scale implementation of aqueous zinc ion batteries. Here, we design a versatile quasi-solid-state polymer electrolyte with highly selective ion transport channels via molecular crosslinking of sodium polyacrylate, lithium magnesium silicate and cellulose nanofiber. The abundant negatively charged ionic channels modulate Zn desolvation process and facilitate ion transport.

View Article and Find Full Text PDF

Magnesium plays an important role in the hardening mechanism of aluminum alloys, but sensitisation-induced intergranular corrosion cracking limits the widespread use of aluminum alloy in equipment. For on-site quantitative assessment of sensitisation in 5-series aluminum alloys, a laser-induced plasma imaging technique is proposed, which evaluates the degree of aluminum alloy sensitisation by obtaining images of the plasma formed by laser ablation of aluminum alloys, and then classifying and quantifying the images using a residual network. Compared to EMAT, XRD, ECT and LIBS techniques, the sample surface only needs to be polished, does not consume chemical reagents and is not affected by the shape and thickness of the workpiece, which provides higher quantitative accuracy, stability and detection efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!