Exoskeletons are a promising tool to support individuals with a decreased level of motor performance. Due to their built-in sensors, exoskeletons offer the possibility of continuously recording and assessing user data, for example, related to motor performance. The aim of this article is to provide an overview of studies that rely on using exoskeletons to measure motor performance. Therefore, we conducted a systematic literature review, following the PRISMA Statement guidelines. A total of 49 studies using lower limb exoskeletons for the assessment of human motor performance were included. Of these, 19 studies were validity studies, and six were reliability studies. We found 33 different exoskeletons; seven can be considered stationary, and 26 were mobile exoskeletons. The majority of the studies measured parameters such as range of motion, muscle strength, gait parameters, spasticity, and proprioception. We conclude that exoskeletons can be used to measure a wide range of motor performance parameters through built-in sensors, and seem to be more objective and specific than manual test procedures. However, since these parameters are usually estimated from built-in sensor data, the quality and specificity of an exoskeleton to assess certain motor performance parameters must be examined before an exoskeleton can be used, for example, in a research or clinical setting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057915 | PMC |
http://dx.doi.org/10.3390/s23063032 | DOI Listing |
Inflammation
January 2025
Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan.
Parkinson's disease (PD) stands as the sec most prevalent incapacitating neurodegenerative disorder characterized by deterioration of dopamine-producing neurons in the substantia nigra. Coenzyme Q10 (CoQ10) has garnered attention as a potential antioxidant, anti-inflammatory agent and enhancer of mitochondrial complex-I activity. This study aimed to examine and compare the effectiveness of liposomal and non-encapsulated CoQ10 in rotenone induced-PD mouse model over a 21-day treatment duration.
View Article and Find Full Text PDFNeurol Sci
January 2025
Department of Physiotherapy, Middle East University, Airport Road, Amman, 11831, Jordan.
Background: Gait impairments are one of the popular consequences of spinal cord injury (SCI). Acute intermittent hypoxia (AIH) is an innovative treatment that has recently been used to enhance motor function in patients with neurological conditions. This review aims to examine the effects of AIH on gait post-SCI, verify who most likely would benefit from the treatment, and recognize the best treatment protocol, if possible.
View Article and Find Full Text PDFElife
January 2025
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University & IDG/McGovern Institute for Brain Research, Beijing, China.
Speech comprehension involves the dynamic interplay of multiple cognitive processes, from basic sound perception, to linguistic encoding, and finally to complex semantic-conceptual interpretations. How the brain handles the diverse streams of information processing remains poorly understood. Applying Hidden Markov Modeling to fMRI data obtained during spoken narrative comprehension, we reveal that the whole brain networks predominantly oscillate within a tripartite latent state space.
View Article and Find Full Text PDFAgri
January 2025
Department of Anesthesiology and Reanimation, Yozgat City Hospital, Yozgat, Türkiye.
Objectives: Lateral sagittal infraclavicular approach is frequently used because it has less risk of complications and provides rapid and adequate regional anesthesia. Due to the fact that the brachial plexus is deeper in the infraclavicular region and the approach angle is sharper, it can be technically challenging. In this study, we aimed to compare the costoclavicular approach, which is a newly defined approach, with the lateral sagittal infraclavicular brachial plexus block.
View Article and Find Full Text PDFElectromagn Biol Med
January 2025
Department of Computer Applications, Kalasalingam Academy of Research and Education - Deemed to be University, Krishnankoil, India.
Brain tumors can cause difficulties in normal brain function and are capable of developing in various regions of the brain. Malignant tumours can develop quickly, pass through neighboring tissues, and extend to further brain regions or the central nervous system. In contrast, healthy tumors typically develop slowly and do not invade surrounding tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!