This study presents a relative localization estimation method for a group of low-cost underwater drones (l-UD), which only uses visual feedback provided by an on-board camera and IMU data. It aims to design a distributed controller for a group of robots to reach a specific shape. This controller is based on a leader-follower architecture. The main contribution is to determine the relative position between the l-UD without using digital communication and sonar positioning methods. In addition, the proposed implementation of the EKF to fuse the vision data and the IMU data improves the prediction capability in cases where the robot is out of view of the camera. This approach allows the study and testing of distributed control algorithms for low-cost underwater drones. Finally, three robot operating system (ROS) platform-based BlueROVs are used in an experiment in a near-realistic environment. The experimental validation of the approach has been obtained by investigating different scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059849 | PMC |
http://dx.doi.org/10.3390/s23063028 | DOI Listing |
Materials (Basel)
December 2024
Institute of Advanced Materials (INAM), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de la Plana, Spain.
Rapid prototyping techniques offer significant advantages in terms of fabrication speed, accessibility, and low cost. This study explores the use of low-cost stereolithographic resins to produce prototypes intended for underwater conditions. The objective is to evaluate the feasibility of different low-cost resin brands by identifying their water absorption percentage and their response in terms of appearance and deformation after prolonged exposure to an underwater environment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
Photoelectrochemical photodetectors (PEC PDs) are promising in underwater optoelectronic devices because of their low cost, good sensitivity, and self-powered characteristics. However, achieving high-performance omnidirectional visible PEC PDs using seawater as the electrolyte is still challenging, hindering their practical application. This work successfully synthesized CuO nanobelt arrays (NAs) on a linear copper wire via a low-temperature solution method with an annealing process.
View Article and Find Full Text PDFHardwareX
December 2024
Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E Pratt St, Baltimore, MD 21202, USA.
ACS Appl Mater Interfaces
December 2024
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
Zoo Biol
October 2024
Oceanário de Lisboa, Lisbon, Portugal.
Accurate collection of biometric data is important for understanding the biology and conservation of marine organisms, including elasmobranch and teleost fish, both in nature and controlled environments where monitoring marine specimens' health is mandatory. Traditional methods involving specimen capture and handling are invasive, stressful, and disruptive. Some techniques like underwater visual census or laser photogrammetry have been used for noninvasive data collection, but they have limitations and biases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!