Applying Reinforcement Learning for Enhanced Cybersecurity against Adversarial Simulation.

Sensors (Basel)

Business Department of Convergence and Open Sharing System, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.

Published: March 2023

Cybersecurity is a growing concern in today's interconnected world. Traditional cybersecurity approaches, such as signature-based detection and rule-based firewalls, are often limited in their ability to effectively respond to evolving and sophisticated cyber threats. Reinforcement learning (RL) has shown great potential in solving complex decision-making problems in various domains, including cybersecurity. However, there are significant challenges to overcome, such as the lack of sufficient training data and the difficulty of modeling complex and dynamic attack scenarios hindering researchers' ability to address real-world challenges and advance the state of the art in RL cyber applications. In this work, we applied a deep RL (DRL) framework in adversarial cyber-attack simulation to enhance cybersecurity. Our framework uses an agent-based model to continuously learn from and adapt to the dynamic and uncertain environment of network security. The agent decides on the optimal attack actions to take based on the state of the network and the rewards it receives for its decisions. Our experiments on synthetic network security show that the DRL approach outperforms existing methods in terms of learning optimal attack actions. Our framework represents a promising step towards the development of more effective and dynamic cybersecurity solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051329PMC
http://dx.doi.org/10.3390/s23063000DOI Listing

Publication Analysis

Top Keywords

reinforcement learning
8
network security
8
optimal attack
8
attack actions
8
cybersecurity
6
applying reinforcement
4
learning enhanced
4
enhanced cybersecurity
4
cybersecurity adversarial
4
adversarial simulation
4

Similar Publications

Methods are needed to mitigate microplastic (MP) pollution to minimize their harm to the environment and human health. Given the ability of polypeptides to adsorb strongly to materials of micro- or nanometer size, plastic-binding peptides (PBPs) could help create bio-based tools for detecting, filtering, or degrading MNP pollution. However, the development of such tools is prevented by the lack of PBPs.

View Article and Find Full Text PDF

Experience-driven suppression of irrelevant distractor locations is context dependent.

Atten Percept Psychophys

January 2025

Department of Psychology, The Ohio State University, 225 Psychology Building, 1835 Neil Ave, Columbus, OH, 43210, USA.

Humans can learn to attentionally suppress salient, irrelevant information when it consistently appears at a predictable location. While this ability confers behavioral benefits by reducing distraction, the full scope of its utility is unknown. As people locomote and/or shift between task contexts, known-to-be-irrelevant locations may change from moment to moment.

View Article and Find Full Text PDF

Agricultural waste or agro-waste, including natural fibers and particles from various crop parts, is increasingly recognized as a significant contributor to environmental issues. However, from a circular economy perspective, these materials present an opportunity to be repurposed into new, eco-friendly products. The present study, specifically focuses on understanding the effect of different factors, such as the particulate loading and the size (coir and hBN - 1 to 5 wt%; Coir Powder size (100-200 μm) of the particles on composite's corrosion rates and water absorption properties.

View Article and Find Full Text PDF

In cybersecurity, anomaly detection in tabular data is essential for ensuring information security. While traditional machine learning and deep learning methods have shown some success, they continue to face significant challenges in terms of generalization. To address these limitations, this paper presents an innovative method for tabular data anomaly detection based on large language models, called "Tabular Anomaly Detection via Guided Prompts" (TAD-GP).

View Article and Find Full Text PDF

Agency beliefs influence how humans learn from different contexts and outcomes. Research demonstrates that stressors, such as exposure to early-life adversity (ELA), are associated with both agency beliefs and learning, but how these processes interact remains unclear. The current study investigated whether exposure to ELA influences agency and interacts with reinforcement learning in adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!