Non-Orthogonal Multiple Access (NOMA) has become a promising evolution with the emergence of fifth-generation (5G) and Beyond-5G (B5G) rollouts. The potentials of NOMA are to increase the number of users, the system's capacity, massive connectivity, and enhance the spectrum and energy efficiency in future communication scenarios. However, the practical deployment of NOMA is hindered by the inflexibility caused by the offline design paradigm and non-unified signal processing approaches of different NOMA schemes. The recent innovations and breakthroughs in deep learning (DL) methods have paved the way to adequately address these challenges. The DL-based NOMA can break these fundamental limits of conventional NOMA in several aspects, including throughput, bit-error-rate (BER), low latency, task scheduling, resource allocation, user pairing and other better performance characteristics. This article aims to provide firsthand knowledge of the prominence of NOMA and DL and surveys several DL-enabled NOMA systems. This study emphasizes Successive Interference Cancellation (SIC), Channel State Information (CSI), impulse noise (IN), channel estimation, power allocation, resource allocation, user fairness and transceiver design, and a few other parameters as key performance indicators of NOMA systems. In addition, we outline the integration of DL-based NOMA with several emerging technologies such as intelligent reflecting surfaces (IRS), mobile edge computing (MEC), simultaneous wireless and information power transfer (SWIPT), Orthogonal Frequency Division Multiplexing (OFDM), and multiple-input and multiple-output (MIMO). This study also highlights diverse, significant technical hindrances in DL-based NOMA systems. Finally, we identify some future research directions to shed light on paramount developments needed in existing systems as a probable to invigorate further contributions for DL-based NOMA system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10058127PMC
http://dx.doi.org/10.3390/s23062946DOI Listing

Publication Analysis

Top Keywords

dl-based noma
16
noma
13
noma systems
12
deep learning
8
resource allocation
8
allocation user
8
survey deep
4
learning based
4
based noma
4
noma state
4

Similar Publications

Non-Orthogonal Multiple Access (NOMA) has become a promising evolution with the emergence of fifth-generation (5G) and Beyond-5G (B5G) rollouts. The potentials of NOMA are to increase the number of users, the system's capacity, massive connectivity, and enhance the spectrum and energy efficiency in future communication scenarios. However, the practical deployment of NOMA is hindered by the inflexibility caused by the offline design paradigm and non-unified signal processing approaches of different NOMA schemes.

View Article and Find Full Text PDF

The fresh and rising demands for high-reliability and ultrahigh-capacity wireless communication have led to extensive research into 5G communications. The wide progress in deep learning (DL) and nonorthogonal multiple access (NOMA) technologies provides countless benefits to communication systems. This survey provides the broad scope of DL-based NOMA for the augmentation of 5G networks.

View Article and Find Full Text PDF

In a non-orthogonal multiple access (NOMA) system, the successive interference cancellation (SIC) procedure is typically employed at the receiver side, where several user's signals are decoded in a subsequent manner. Fading channels may disperse the transmitted signal and originate dependencies among its samples, which may affect the channel estimation procedure and consequently affect the SIC process and signal detection accuracy. In this work, the impact of Deep Neural Network (DNN) in explicitly estimating the channel coefficients for each user in NOMA cell is investigated in both Rayleigh and Rician fading channels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!