Industry 4.0 has revolutionized the use of physical and digital systems while playing a vital role in the digitalization of maintenance plans for physical assets in an optimal way. Road network conditions and timely maintenance plans are essential in the predictive maintenance (PdM) of a road. We developed a PdM-based approach that uses pre-trained deep learning models to recognize and detect the road crack types effectively and efficiently. We, in this work, explore the use of deep neural networks to classify roads based on the amount of deterioration. This is done by training the network to identify various types of cracks, corrugation, upheaval, potholes, and other types of road damage. Based on the amount and severity of the damage, we can determine the degradation percentage and have a PdM framework where we can identify the intensity of damage occurrence and, thus, prioritize the maintenance decisions. The inspection authorities and stakeholders can make maintenance decisions for certain types of damages using our deep learning-based road predictive maintenance framework. We evaluated our approach using precision, recall, F1-score, intersection-over-union, structural similarity index, and mean average precision measures, and found that our proposed framework achieved significant performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054385 | PMC |
http://dx.doi.org/10.3390/s23062935 | DOI Listing |
Semin Oncol Nurs
January 2025
Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy; Department of Nursing and Obstetrics, Wroclaw Medical University, Poland.
Objective: To test the Self-Care Oral Anticancer Agents Index (SCOAAI)'s psychometric properties (structural validity, convergent validity, predictive validity, and internal consistency) in a sample of patients with solid tumour on Oral anticancer agents (OAA).
Methods: A methodological research in five in- or out-patient Italian facilities. Structural validity was tested by confirmatory factor analysis, and internal consistency was assessed through Cronbach's alpha and composite reliability.
J Am Chem Soc
January 2025
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Coordinatively unsaturated copper (Cu) has been demonstrated to be effective for electrifying CO reduction into C products by adjusting the coupling of C-C intermediates. Nevertheless, the intuitive impacts of ultralow coordination Cu sites on C products are scarcely elucidated due to the lack of synthetic recipes for Cu with low coordination numbers and its vulnerability to aggregation under reductive potentials. Herein, computational predictions revealed that Cu sites with higher levels of coordinative unsaturation favored the adsorption of C and C intermediates.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
The Geriatric Nutritional Risk Index (GNRI) is an effective tool for identifying malnutrition, and helps monitor the prognosis of patients undergoing maintenance hemodialysis. However, the association between the GNRI and cardiovascular or all-cause mortality in hemodialysis patients remains unclear. Therefore, this study investigated the correlation of the GNRI with all-cause and cardiovascular mortality in patients undergoing maintenance hemodialysis.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy.
This study investigates the potential of deploying a neural network model on an advanced programmable logic controller (PLC), specifically the Finder Opta™, for real-time inference within the predictive maintenance framework. In the context of Industry 4.0, edge computing aims to process data directly on local devices rather than relying on a cloud infrastructure.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
Predicting the time series energy consumption data of manufacturing processes can optimize energy management efficiency and reduce maintenance costs for enterprises. Using deep learning algorithms to establish prediction models for sensor data is an effective approach; however, the performance of these models is significantly influenced by the quantity and quality of the training data. In real production environments, the amount of time series data that can be collected during the manufacturing process is limited, which can lead to a decline in model performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!