A fiber-optic torsion sensor based on a helical two-core fiber (HTCF) is proposed and experimentally demonstrated for simultaneously measuring torsion angle and torsion direction. The sensor consists of a segment of HTCF and two single-mode fibers (SMFs) forming a Mach-Zehnder interferometer (MZI). The helical structure is implemented by pre-twisting a 1 cm long two-core fiber (TCF). The performance of the sensor with pre-twisted angles of 180°, 360°, and 540° is experimentally analyzed. The results show that the sensor can realize the angular measurement and effectively distinguish the torsion direction. It is worth noting that the sensor has maximum sensitivity when the pre-twist angle is 180 degrees. The obtained wavelength sensitivities of torsion and temperature are 0.242 nm/(rad/m) and 32 pm/°C, respectively. The sensor has the advantages of easy fabrication, low cost, compact structure, and high sensitivity, which is expected to yield potential applications in fields where both torsion angle and direction measurements are required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059029 | PMC |
http://dx.doi.org/10.3390/s23062874 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!