Background: Necrotizing pathogens pose an immense economic and ecological threat to trees and forests, but the molecular analysis of these pathogens is still in its infancy because of lacking model systems. To close this gap, we developed a reliable bioassay for the widespread necrotic pathogen Botrytis cinerea on poplars (Populus sp.), which are established model organisms to study tree molecular biology.
Results: Botrytis cinerea was isolated from Populus x canescens leaves. We developed an infection system using fungal agar plugs, which are easy to handle. The method does not require costly machinery and results in very high infection success and significant fungal proliferation within four days. We successfully tested the fungal plug infection on 18 poplar species from five different sections. Emerging necroses were phenotypically and anatomically examined in Populus x canescens leaves. We adapted methods for image analyses of necrotic areas. We calibrated B. cinerea DNA against Ct-values obtained by quantitative real-time polymerase chain reaction and measured the amounts of fungal DNA in infected leaves. Increases in necrotic area and fungal DNA were strictly correlated within the first four days after inoculation. Methyl jasmonate pretreatment of poplar leaves decreased the spreading of the infection.
Conclusions: We provide a simple and rapid protocol to study the effects of a necrotizing pathogen on poplar leaves. The bioassay and fungal DNA quantification for Botrytis cinerea set the stage for in-depth molecular studies of immunity and resistance to a generalist necrotic pathogen in trees.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061990 | PMC |
http://dx.doi.org/10.1186/s13007-023-01011-3 | DOI Listing |
J Agric Food Chem
January 2025
Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China.
Taking the natural product cerbinal as the lead compound, 30 novel 5-aryl-cyclopenta[]pyridine derivatives were designed and synthesized based on the previous bioactivity studies of the cyclopenta[]pyridines. The modification of the position-5 of compound was achieved by amination, bromination, and cross coupling using cerbinal as the raw material. The results of the bioactivity tests demonstrated that partial compounds exhibited superior activity against plant viruses compared to compound .
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China.
Pest Manag Sci
January 2025
Department of Pesticide Science, College of Plant Protection, Shenyang Agricultural University, Shenyang, China.
Background: Botrytis cinerea is one of the most serious plant diseases and severely threatens agricultural production. The rapidly intensifying resistance makes most commercial chemical fungicides lose control efficacy. Developing new fungicides with novel structures and modes of action is an effective measure to solve this problem.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia.
infections of grapes significantly reduce yield and quality and increase phenolic compound oxidation, resulting in color loss, off-flavors, and odors in wine. In this study, metabolites were extracted from grape homogenates comprising healthy or infected grapes from different vintages, cultivars, regions, and maturity stages. Samples were randomly analyzed by direct injection into an ion trap mass spectrometer, with data collected from 50 to 2000 / for 1 min.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China. Electronic address:
Botrytis cinerea populations resistant to succinate dehydrogenase inhibitors (SDHIs) represent a major problem for the sustainable development of modern agriculture. In the present study, the resistance mechanism of B_P225F and B_H272R mutations in B. cinerea SDH (BcSDH) resistant to SDHIs fungicides, including boscalid (BOS), penflufen (PEN), pydiflumetofen (PYD), fluopyram (FLU), and benzovindiflupyr (BEN), was uncovered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!