A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural mechanisms for regulation of GSDMB pore-forming activity. | LitMetric

Cytotoxic lymphocyte-derived granzyme A (GZMA) cleaves GSDMB, a gasdermin-family pore-forming protein, to trigger target cell pyroptosis. GSDMB and the charter gasdermin family member GSDMD have been inconsistently reported to be degraded by the Shigella flexneri ubiquitin-ligase virulence factor IpaH7.8 (refs. ). Whether and how IpaH7.8 targets both gasdermins is undefined, and the pyroptosis function of GSDMB has even been questioned recently. Here we report the crystal structure of the IpaH7.8-GSDMB complex, which shows how IpaH7.8 recognizes the GSDMB pore-forming domain. We clarify that IpaH7.8 targets human (but not mouse) GSDMD through a similar mechanism. The structure of full-length GSDMB suggests stronger autoinhibition than in other gasdermins. GSDMB has multiple splicing isoforms that are equally targeted by IpaH7.8 but exhibit contrasting pyroptotic activities. Presence of exon 6 in the isoforms dictates the pore-forming, pyroptotic activity in GSDMB. We determine the cryo-electron microscopy structure of the 27-fold-symmetric GSDMB pore and depict conformational changes that drive pore formation. The structure uncovers an essential role for exon-6-derived elements in pore assembly, explaining pyroptosis deficiency in the non-canonical splicing isoform used in recent studies. Different cancer cell lines have markedly different isoform compositions, correlating with the onset and extent of pyroptosis following GZMA stimulation. Our study illustrates fine regulation of GSDMB pore-forming activity by pathogenic bacteria and mRNA splicing and defines the underlying structural mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-023-05872-5DOI Listing

Publication Analysis

Top Keywords

gsdmb pore-forming
12
gsdmb
10
structural mechanisms
8
regulation gsdmb
8
pore-forming activity
8
ipah78 targets
8
pore-forming
5
ipah78
5
mechanisms regulation
4
activity cytotoxic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!