A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Co-drawing of technical and high-performance thermoplastics with glasses via the molten core method. | LitMetric

Among the different fundamental aspects that govern the design and development of elongated multimaterial structures via the preform-to-fiber technique, material association methodologies hold a crucial role. They greatly impact the number, complexity and possible combinations of functions that can be integrated within single fibers, thus defining their applicability. In this work, a co-drawing strategy to produce monofilament microfibers from unique glass-polymer associations is investigated. In particular, the molten core-method (MCM) is applied to several amorphous and semi-crystalline thermoplastics for their integration within larger glass architectures. General conditions in which the MCM can be employed are established. It is demonstrated that the classical glass transition temperature compatibility requirements for glass-polymer associations can be overcome, and that other glass compositions than chalcogenides can be thermally stretched with thermoplastics, here oxide glasses are considered. Composite fibers with various geometries and compositional profiles are then presented to illustrate the versatility of the proposed methodology. Finally, investigations are focused on fibers produced from the association of poly ether ether ketone (PEEK) with tellurite and phosphate glasses. It is demonstrated that upon appropriate elongation conditions, the crystallization kinetics of PEEK can be controlled during the thermal stretching and crystallinities of the polymer as low as 9 mass. % are reached in the final fiber. It is believed such novel material associations as well as the ability to tailor material properties within fibers could inspire the development of a new class of hybrid elongated objects with unprecedented functionalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060233PMC
http://dx.doi.org/10.1038/s41598-023-32174-7DOI Listing

Publication Analysis

Top Keywords

glass-polymer associations
8
co-drawing technical
4
technical high-performance
4
high-performance thermoplastics
4
thermoplastics glasses
4
glasses molten
4
molten core
4
core method
4
method fundamental
4
fundamental aspects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!