The aim of this study was to explore the feasibility of Raman spectroscopy combined with computer algorithms in the diagnosis of primary Sjögren syndrome (pSS). In this study, Raman spectra of 60 serum samples were acquired from 30 patients with pSS and 30 healthy controls (HCs). The means and standard deviations of the raw spectra of patients with pSS and HCs were calculated. Spectral features were assigned based on the literature. Principal component analysis (PCA) was used to extract the spectral features. Then, a particle swarm optimization (PSO)-support vector machine (SVM) was selected as the method of parameter optimization to rapidly classify patients with pSS and HCs. In this study, the SVM algorithm was used as the classification model, and the radial basis kernel function was selected as the kernel function. In addition, the PSO algorithm was used to establish a model for the parameter optimization method. The training set and test set were randomly divided at a ratio of 7:3. After PCA dimension reduction, the specificity, sensitivity and accuracy of the PSO-SVM model were obtained, and the results were 88.89%, 100% and 94.44%, respectively. This study showed that the combination of Raman spectroscopy and a support vector machine algorithm could be used as an effective pSS diagnosis method with broad application value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060214PMC
http://dx.doi.org/10.1038/s41598-023-29943-9DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
12
vector machine
12
patients pss
12
spectroscopy combined
8
support vector
8
machine algorithm
8
pss hcs
8
spectral features
8
parameter optimization
8
kernel function
8

Similar Publications

Designing a 2D van der Waals oxide with lone-pair electrons as chemical scissor.

Natl Sci Rev

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

Two-dimensional (2D) van der Waals (vdW) materials are known for their intriguing physical properties, but their rational design and synthesis remain a great challenge for chemists. In this work, we successfully synthesized a new non-centrosymmetric oxide, i.e.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.

View Article and Find Full Text PDF

To fully understand the variation in performance of cyclotrimethylenetrinitramine (RDX) crystals under strong magnetic field exposure, the strong magnetic loading of RDX was conducted in both stable and alternating magnetic fields. The morphological changes of RDX crystals exposed to magnetic fields were studied under a scanning electron microscope. Then, the lattice changes of RDX exposed to magnetic fields were analyzed through X-ray diffraction and Raman spectroscopy.

View Article and Find Full Text PDF

Polymicrobial biofilm infections, especially associated with medical devices such as peripheral venous catheters, are challenging in clinical settings for treatment and management. In this study, we examined the mixed biofilm formed by Candida glabrata and Klebsiella pneumoniae, which were co-isolated from the same peripheral venous catheter. Our results revealed that C.

View Article and Find Full Text PDF

An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles (NPs) or nanostructures interact with incident light. Conversely, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique based on Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!