In exsolution, nanoparticles form by emerging from oxide hosts by application of redox driving forces, leading to transformative advances in stability, activity, and efficiency over deposition techniques, and resulting in a wide range of new opportunities for catalytic, energy and net-zero-related technologies. However, the mechanism of exsolved nanoparticle nucleation and perovskite structural evolution, has, to date, remained unclear. Herein, we shed light on this elusive process by following in real time Ir nanoparticle emergence from a SrTiO host oxide lattice, using in situ high-resolution electron microscopy in combination with computational simulations and machine learning analytics. We show that nucleation occurs via atom clustering, in tandem with host evolution, revealing the participation of surface defects and host lattice restructuring in trapping Ir atoms to initiate nanoparticle formation and growth. These insights provide a theoretical platform and practical recommendations to further the development of highly functional and broadly applicable exsolvable materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060596 | PMC |
http://dx.doi.org/10.1038/s41467-023-37212-6 | DOI Listing |
Methods Mol Biol
January 2025
Stowers Institute for Medical Research, Kansas City, MO, USA.
Understanding the spatial and temporal dynamics of gene expression is crucial for unraveling molecular mechanisms underlying various biological processes. While traditional methods have offered insights into gene expression patterns, they primarily focus on mature mRNA transcripts, lacking real-time visualization of newly synthesized or nascent transcription events. Recent advancements in monitoring nascent transcription in live cells provide valuable insights into transcriptional dynamics.
View Article and Find Full Text PDFACS Sens
January 2025
School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
Visual, sensitive, and selective detection of carcinogenic substances is highly desired in portable health protection and practical medicine production. However, achieving this goal presents significant challenges with the traditional single-mode sensors reported so far, as they have limited sensing mechanisms and provide only a single output signal. Here, we report an effective optical and electrical dual-mode sensor for the visual, sensitive, and selective detection of -nitrosodiethylamine (NDEA), a typical volatile carcinogenic substance, leveraging the synergy of ionic liquid-doped liquid crystals (IL-LC).
View Article and Find Full Text PDFAnalyst
January 2025
Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK.
The seed coat plays a pivotal role in seed development and germination, acting as a protective barrier and mediating interac-tions with the external environment. Traditional histochemical techniques and analytical methods have provided valuable insights into seed coat composition and function. However, these methods often suffer from limitations such as indirect chemical signatures and lack of spatial resolution.
View Article and Find Full Text PDFFront Neurosci
December 2024
The Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Türkiye.
Smart city development is a complex, transdisciplinary challenge that requires adaptive resource use and context-aware decision-making practices to enhance human functionality and capabilities while respecting societal and environmental rights, and ethics. There is an urgent need for action in cities, particularly to (i) enhance the health and wellbeing of urban residents while ensuring inclusivity in urban development (e.g.
View Article and Find Full Text PDFTurk J Ophthalmol
December 2024
Keio University Faculty of Medicine, Department of Ophthalmology, Tokyo, Japan.
In vivo confocal microscopy (IVCM) is a non-invasive imaging technique used to visualize the layers of the cornea and conjunctiva in real time. In patients with atopic keratoconjunctivitis (AKC) and vernal keratoconjunctivitis (VKC), this technology can be useful in diagnosing and monitoring the disease, as well as evaluating the efficacy of treatments. IVCM can reveal subclinical abnormalities in the corneal and conjunctival epithelium such as inflammatory cell infiltrates and tissue damage, which can provide insight into the pathogenesis of AKC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!