Chronic use of nitrous oxide can lead to motor complications. We report the case of a 15-year-old boy with rapid onset of lower limb paralysis after massive nitrous oxide intake. He had been previously hospitalized for the same symptoms, but did not mention the use of nitrous oxide and no etiology was found. During hospitalization, he presented with two consecutive self-limited episodes of ventricular tachycardia. Currently, no routine tests are performed to confirm nitrous oxide toxicity. This case highlights the recurrent nature of the motor deficits and suggests a possible association between motor deficits and cardiac rhythm disorders in the setting of nitrous oxide intoxication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arcped.2023.02.002 | DOI Listing |
Neurol Res Pract
January 2025
Department of Vascular Neurology, University Hospital Bonn, Bonn, Germany.
Background: Nitrous oxide (N₂O), commonly known as laughing gas, is widely recognized for its anesthetic and analgesic effects, and is frequently used in medical contexts. However, its misuse can lead to significant neurological complications, which are often under-recognized in clinical practice. Recent data on such cases in Germany are rare.
View Article and Find Full Text PDFWater Res
December 2024
Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China. Electronic address:
Flash drought (FD) events induced by climate change may disrupt the normal hydrological regimes of floodplain lakes and affect the plant-microbe mediated dissimilatory nitrate reduction (DNR), i.e., denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA), thus having important consequences for nitrous oxide (NO) emissions and nitrogen (N) retention.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan.
The effective elimination of NO from automobile exhaust at low temperatures poses significant challenges. Compared to other materials, supported RhO catalysts exhibit high NO decomposition activities, even in the presence of O, CO, and HO. Metal additives can enhance the low-temperature NO decomposition activities over supported RhO catalysts; however, the enhancement mechanism and active sites require further investigation.
View Article and Find Full Text PDFData Brief
February 2025
CREA - Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, I-40128 Bologna, Italy.
Farming practices such as soil tillage, organic/mineral fertilization, irrigation, crop selection and residues management influence multiple ecosystem services provided by agricultural systems. These practices exhibit complex, non-linear interrelationships that affect crop productivity, water quality, and non-carbon dioxide greenhouse gases (GHG) emissions, possibly offsetting their benefits regarding soil organic carbon (SOC) sequestration. Current methodologies from the Intergovernmental Panel on Climate Change (IPCC) for assessing the impacts of alternative farming practices on GHG emissions rely on global or country-specific coefficients.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:
In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!