Our previous study has suggested that peroxisome proliferator-activated receptor α (PPARα) plays a crucial role in the pathophysiology of schizophrenia. In the current study, we screened and identified rare variants in the PPARA gene (encoding PPARα) of schizophrenia subjects. In vitro study showed that those variants decreased activities of PPARα as a transcription factor. Ppara KO mice exhibited a deficit in the sensorimotor gating function and schizophrenia-related histological abnormalities. RNA-seq analysis revealed that PPARα regulates the expression of synaptogenesis signaling pathway-related genes in the brain. Remarkably, treatment of mice with the PPARα agonist fenofibrate alleviated an NMDA receptor antagonist, phencyclidine (PCP)-induced spine pathology and reduced sensitivity to MK-801, another NMDA receptor antagonist. In conclusion, the current study further supports the idea that perturbation in the PPARα-regulated transcriptional machinery leads to a predisposition to schizophrenia, probably by affecting synapse physiology. This study also demonstrates that PPARα can serve as a novel therapeutic target for schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1254/fpj.22142DOI Listing

Publication Analysis

Top Keywords

receptor pparα
8
peroxisome proliferator-activated
8
proliferator-activated receptor
8
novel therapeutic
8
therapeutic target
8
current study
8
nmda receptor
8
receptor antagonist
8
pparα
7
receptor
5

Similar Publications

Background: Per- and polyfluoroalkyl Substances (PFAS) are synthetic chemicals widely detected in humans and the environment. Exposure to perfluorooctanesulfonic acid (PFOS) or perfluorohexanesulfonic acid (PFHxS) was previously shown to cause dark-phase hyperactivity in larval zebrafish.

Objectives: The objective of this study was to elucidate the mechanism by which PFOS or PFHxS exposure caused hyperactivity in larval zebrafish.

View Article and Find Full Text PDF

Oxidative Stress Causes Masculinization of Genetically Female Medaka Without Elevating Cortisol.

Front Endocrinol (Lausanne)

July 2022

Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan.

Medaka () is a teleost fish with an XX/XY sex determination system. Sex reversal from female-to-male (masculinization of XX fish) can be induced through cortisol elevation from exposure to environmental stress such as high temperature during sexual differentiation. However, the effects of oxidative stress, generated metabolic reactions and biological defense mechanisms, on the sexual differentiation of medaka are unclear.

View Article and Find Full Text PDF
Article Synopsis
  • The pparab subtype in zebrafish is strongly expressed in high oxidative tissues and its deficiency reduces fatty acid β-oxidation in both liver and muscle, similar to the role of PPARα in mammals.
  • Knockout of pparab leads to increased glucose utilization and inhibited amino acid breakdown, showcasing a metabolic shift in energy sources.
  • This research offers new insights into PPARα's regulatory role in nutrient metabolism and establishes zebrafish as a valuable model for studying metabolic processes comparably to mammals.
View Article and Find Full Text PDF

Medaka (Oryzias latipes) is a teleost fish with an XX/XY sex determination system, similar to that of mammals. However, under high temperature conditions, XX medaka is masculinised by elevation of cortisol, the major teleost glucocorticoid. In this study, to identify novel factors in the gonads acting downstream from cortisol during sexual differentiation, we performed RNA sequencing (RNA-seq) analysis using the gonadal regions of larvae reared at normal temperature with and without cortisol, and at high temperature.

View Article and Find Full Text PDF

Background: Many molecules and signaling pathways involved in neural development play a role in neurodegenerative diseases and brain tumor progression. Peroxisome proliferator-activated receptor (PPAR) proteins regulate the differentiation of tissues and the progression of many diseases. However, the role of these proteins in neural development is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!