A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An End-to-End Natural Language Processing System for Automatically Extracting Radiation Therapy Events From Clinical Texts. | LitMetric

Purpose: Real-world evidence for radiation therapy (RT) is limited because it is often documented only in the clinical narrative. We developed a natural language processing system for automated extraction of detailed RT events from text to support clinical phenotyping.

Methods And Materials: A multi-institutional data set of 96 clinician notes, 129 North American Association of Central Cancer Registries cancer abstracts, and 270 RT prescriptions from HemOnc.org was used and divided into train, development, and test sets. Documents were annotated for RT events and associated properties: dose, fraction frequency, fraction number, date, treatment site, and boost. Named entity recognition models for properties were developed by fine-tuning BioClinicalBERT and RoBERTa transformer models. A multiclass RoBERTa-based relation extraction model was developed to link each dose mention with each property in the same event. Models were combined with symbolic rules to create a hybrid end-to-end pipeline for comprehensive RT event extraction.

Results: Named entity recognition models were evaluated on the held-out test set with F1 results of 0.96, 0.88, 0.94, 0.88, 0.67, and 0.94 for dose, fraction frequency, fraction number, date, treatment site, and boost, respectively. The relation model achieved an average F1 of 0.86 when the input was gold-labeled entities. The end-to-end system F1 result was 0.81. The end-to-end system performed best on North American Association of Central Cancer Registries abstracts (average F1 0.90), which are mostly copy-paste content from clinician notes.

Conclusions: We developed methods and a hybrid end-to-end system for RT event extraction, which is the first natural language processing system for this task. This system provides proof-of-concept for real-world RT data collection for research and is promising for the potential of natural language processing methods to support clinical care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522797PMC
http://dx.doi.org/10.1016/j.ijrobp.2023.03.055DOI Listing

Publication Analysis

Top Keywords

natural language
16
language processing
16
processing system
12
end-to-end system
12
radiation therapy
8
support clinical
8
north american
8
american association
8
association central
8
central cancer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!