A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MicroRNAs of extracellular vesicles derived from mesenchymal stromal cells alleviate inflammation in dry eye disease by targeting the IRAK1/TAB2/NF-κB pathway. | LitMetric

MicroRNAs of extracellular vesicles derived from mesenchymal stromal cells alleviate inflammation in dry eye disease by targeting the IRAK1/TAB2/NF-κB pathway.

Ocul Surf

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China. Electronic address:

Published: April 2023

Purpose: To investigate the efficacy and mechanisms of human umbilical cord-derived MSC-derived extracellular vesicles (hucMSC-EVs) in a mouse model of desiccation-induced dry eye disease (DED).

Methods: hucMSC-EVs were enriched by ultracentrifugation. The DED model was induced by desiccating environment combined with scopolamine administration. The DED mice were divided into the hucMSC-EVs group, fluorometholone (FML) group, PBS group, and blank control group. Tear secretion, corneal fluorescein staining, the cytokine profiles in tears and goblet cells, TUNEL-positive cell, and CD4 cells were examined to assess therapeutic efficiency. The miRNAs in the hucMSC-EVs were sequenced, and the top 10 were used for miRNA enrichment analysis and annotation. The targeted DED-related signaling pathway was further verified by using RT‒qPCR and western blotting.

Results: Treatment with hucMSC-EVs increased the tear volume and maintained corneal integrity in DED mice. The cytokine profile in the tears of the hucMSC-EVs group presented with a lower level of proinflammatory cytokines than PBS group. Moreover, hucMSC-EVs treatment increased goblet cell density and inhibited cell apoptosis and CD4 cell infiltration. Functional analysis of the top 10 miRNAs in hucMSC-EVs showed a high correlation with immunity. Among them, miR-125 b, let-7b, and miR-6873 were conserved between humans and mice and were associated with the IRAK1/TAB2/NF-κB pathway that was activated in DED. Furthermore, IRAK1/TAB2/NF-κB pathway activation and the abnormal expression of IL-4, IL-8, IL-10, IL-13, IL-17, and TNF-α were reversed by hucMSC-EVs.

Conclusions: hucMSCs-EVs alleviate DED signs, suppress inflammation and restore homeostasis of the corneal surface by multitargeting the IRAK1/TAB2/NF-κB pathway via certain miRNAs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtos.2023.03.002DOI Listing

Publication Analysis

Top Keywords

irak1/tab2/nf-κb pathway
16
extracellular vesicles
8
dry eye
8
eye disease
8
hucmsc-evs
8
ded mice
8
hucmsc-evs group
8
pbs group
8
mirnas hucmsc-evs
8
group
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!