The therapeutics available for cancer treatment have the major hurdle of site-specific delivery of anti-cancer drugs to the tumor site and non-target specific side effects. The standard therapy for ovarian cancer still poses numerous pitfalls due to the irrational use of drugs affecting healthy cells. As an appealing approach, nanomedicine could revamp the therapeutic profile of anti-cancer agents. Owing to the low manufacturing cost, increased biocompatibility, and modifiable surface properties, lipid-based nanocarriers, particularly solid lipid nanoparticles (SLN), have remarkable drug delivery properties in cancer treatment. Given the extra-ordinary benefits, we developed anti-neoplastic (paclitaxel) drug-loaded SLN (PTX-SLN) and functionalized with N-acetyl-d-glucosamine (GLcNAc) (GLcNAc-PTX-SLN) to reduce the rate of proliferation, growth, and metastasis of ovarian cancer cells over-expressing GLUT1 transporters. The particles presented considerable size and distribution while demonstrating haemocompatibility. Using GLcNAc modified form of SLNs, confocal microscopy, MTT assay, and flow cytometry study demonstrated higher cellular uptake and significant cytotoxic effect. Also, molecular docking results established excellent binding affinity between GLcNAc and GLUT1, complimenting the feasibility of the therapeutic approach in targeted cancer therapy. Following the compendium of target-specific drug delivery by SLN, our results demonstrated a significant response for ovarian cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2023.122894 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!