Diabetes mellitus (DM) has become one of the most prevalent diseases across the globe, mainly because of the inability of existing treatment strategies to target its root cause (i.e., pancreatic β cell damage). Polymeric micelles (PMs) have gained attention as a treatment option for DM by targeting misfolded islet amyloid polypeptide protein (IAPP), which is common in more than 90% of DM patients. Such misfolding could result from either oxidative stress or mutation in the gene encoding IAPP. In this review, we discuss progress in the designing of PMs to halt islet amyloidosis along with their mechanism and dynamics of interactions with IAPP. We also discuss the clinical challenges associated with the translation of PMs as anti-islet amyloidogenic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.drudis.2023.103571 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!