Exercise induced increases in muscle fiber number.

Eur J Appl Physiol Occup Physiol

Published: May 1986

The effect of weight-lifting, which induced muscular enlargement, on fiber number was tested in the flexor carpi radialis muscle by operantly conditioning 6 cats to flex their right wrist against increasing resistance for an average of 101 weeks. The left was used as a control. At the end of training, the cats were performing "one-arm" lifts with an average of 57% of their body weight. There was an 11% greater muscle weight (P less than 0.01) and 9% (P less than 0.02) more fibers in the exercised muscles from the right limb than in the left. This study using a different method, supports our earlier observations that prolonged weight-lifting exercise significantly increases the total number of muscle fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00714995DOI Listing

Publication Analysis

Top Keywords

fiber number
8
exercise induced
4
induced increases
4
muscle
4
increases muscle
4
muscle fiber
4
number weight-lifting
4
weight-lifting induced
4
induced muscular
4
muscular enlargement
4

Similar Publications

Flax ( L.) is known as a dual-purpose crop, producing both fiber and oil, which have a wide range of uses. Successful flax breeding requires knowledge on the genetic determinants of flax traits.

View Article and Find Full Text PDF

Bridging past and present: exploring Cannabis traditions in Armenia through ethnobotanical interviews and bibliographic prospecting.

J Cannabis Res

January 2025

Laboratori de Botànica (UB), Facultat de Farmàcia i Ciències de l'Alimentació-Institut de Recerca de la Biodiversitat (IRBio), Unitat Associada al CSIC, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, Catalonia, 08028, Spain.

Background: Cannabis sativa L. (Cannabaceae) has been widely used by humans throughout its history for a variety of purposes (medicinal, alimentary and other uses). Armenia, with its rich cultural history and diverse ecosystems, offers a unique context for ethnobotanical research about traditional uses of Cannabis.

View Article and Find Full Text PDF

CT-sensitized nanoprobe for effective early diagnosis and treatment of pulmonary fibrosis.

J Nanobiotechnology

January 2025

Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China.

Early diagnosis is critical for providing a timely window for effective therapy in pulmonary fibrosis (PF); however, achieving this remains a significant challenge. The distinct honeycombing patterns observed in computed tomography (CT) for the primary diagnosis of PF are typically only visible in patients with moderate to severe disease, often leading to missed opportunities for early intervention. In this study, we developed a nanoprobe designed to accumulate at fibroblastic foci and loaded with the CT sensitizer iodide to enable effective early diagnosis of PF.

View Article and Find Full Text PDF

Background: In recent years, there have been suggestions for new restorative strategies that aim to effectively utilize modern adhesive technologies and protect the remaining intact tooth structure. This study was conducted to evaluate the clinical performance of fiber reinforced resin composites in restoring Class II MOD cavities over 18 months.

Methods: Forty-five participants with class II MOD cavities were randomly enrolled.

View Article and Find Full Text PDF

Contextuality is a hallmark feature of the quantum theory that captures its incompatibility with any noncontextual hidden-variable model. The Greenberger-Horne-Zeilinger (GHZ)-type paradoxes are proofs of contextuality that reveal this incompatibility with deterministic logical arguments. However, the GHZ-type paradox whose events can be included in the fewest contexts and that brings the strongest nonclassicality remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!