Introduction: Cholesterol is a key lipid molecule within cell membranes. This is especially true in cavelolas, invaginated membrane nanodomains, which present the protein caveolin-1 (CAV-1). It is important to note that this structure is involved in many cell signalling pathways. Additionally, high cholesterol is seen in different tumor types but little is known in regards to oral tongue squamous cell carcinoma (OTSCC). The aim of this study was to evaluate the influence of cholesterol depletion on primary (SCC-25) and metastatic (HSC-3) OTSCC cell lines.
Materials And Methods: Cell membrane fluidity, cell viability, gene and protein expression of CAV-1 and of epithelial-mesenchymal transition (EMT) markers, cell migration in Myogel and invasion-myoma assay were evaluated after cholesterol depletion with methyl-β-cyclodextrin (MβCD - 7.5, 10 or 15 mM) RESULTS: Decreased cell viability and increased membrane fluidity of SCC-25 cells was seen with cholesterol depletion but cell viability was less affected and there was no effect on membrane fluidity in HSC-3. Cholesterol depletion also decreased CAV-1 at 6 h but increased it after 24 h.; both epithelial and mesenchymal EMT genes were upregulated after 6 h, followed by downregulation at 24 h in SCC-25. In HSC-3, CAV-1 was downregulated, and E-cadherin gene (ECAD) was upregulated at 6 h. Only the protein β-catenin in SCC-25 was affected, and cell migration of both cell lines was decreased, affecting SCC-25 more intensely. The invasive capacity within human myoma organotypic model was increased in SCC-25 and decreased in HSC-3.
Conclusion: Cholesterol depletion affects CAV-1 and ECAD inversely. This affect also depends on cell type since the invasive capacity was augmented in primary cells while decreased in metastatic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.archoralbio.2023.105675 | DOI Listing |
( ) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi-(MDR) and extensively-(XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for long-term survival Here, we report the development of antitubercular small molecules that inhibit the cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule that can bind to the heme cofactor of both enzymes.
View Article and Find Full Text PDFHepatol Commun
December 2024
Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
Background: Sphingosine-1 phosphate (S1P) is a bioactive lipid molecule that modulates inflammation and hepatic lipid metabolism in MASLD, which affects 1 in 3 people and increases the risk of liver fibrosis and hepatic cancer. S1P can be generated by 2 isoforms of sphingosine kinase (SphK). SphK1 is well-studied in metabolic diseases.
View Article and Find Full Text PDFNat Commun
January 2025
Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium.
The SARS-CoV-2 spike protein's membrane-binding domain bridges the viral and host cell membrane, a critical step in triggering membrane fusion. Here, we investigate how the SARS-CoV-2 spike protein interacts with host cell membranes, focusing on a membrane-binding peptide (MBP) located near the TMPRSS2 cleavage site. Through in vitro and computational studies, we examine both primed (TMPRSS2-cleaved) and unprimed versions of the MBP, as well as the influence of its conserved disulfide bridge on membrane binding.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
Department of Medicine, Leon H. Charney Division of Cardiology (S.Z., B.-X.L., A.C., M.F., E.A.F., S.P.H.).
Background: Cholesterol efflux capacity (CEC) of HDL (high-density lipoprotein) is inversely associated with incident cardiovascular events, independent of HDL cholesterol. Obesity is characterized by low HDL cholesterol and impaired HDL function, such as CEC. Bariatric surgery, including Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG), broadly leads to improved cardiovascular outcomes, but impacts on risk factors differ by procedure, with greater improvements in weight loss, blood pressure, and glycemic control after RYGB, but greater improvements in HDL cholesterol and CEC levels after SG.
View Article and Find Full Text PDFInt J Med Microbiol
December 2024
Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!