Ultrasensitive determination of tumor marker (TM) is of great significance in cancer prevention and diagnosis. Traditional TM detection methods involve large instrumentation and professional manipulation, which complicate the assay procedures and increase the cost of investment. To resolve these problems, an integrated electrochemical immunosensor based on the flexible polydimethylsiloxane/gold (PDMS/Au) film with Fe-Co metal-organic framework (Fe-Co MOF) as a signal amplifier was fabricated for ultrasensitive determination of alpha fetoprotein (AFP). First, gold layer was deposited on the hydrophilic PDMS film to form the flexible three-electrode system, and then the thiolated aptamer for AFP was immobilized. Afterward, the aminated Fe-Co MOF possessing high peroxidase-like activity and large specific surface area was prepared by a facile solvothermal method, and subsequently the biofunctionalized MOF could effectively capture biotin antibody (Ab) to form MOF-Ab as a signal probe and amplify the electrochemical signal remarkably, thereby realizing highly sensitive detection of AFP with a wide linear range of 0.01-300 ng/mL and a low detection limit of 0.71 pg/mL. In addition, the PDMS based-immunosensor showed good accuracy for assaying of AFP in clinical serum samples. The integrated and flexible electrochemical immunosensor based on the Fe-Co MOF as a signal amplifier demonstrates great potential for application in the personalized point-of-care (POC) clinical diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2023.115245 | DOI Listing |
Mikrochim Acta
January 2025
Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
An electrochemical sensor is presented for the detection of the chloramphenicol (CAP) based on a bimetallic MIL-101(Fe/Co) MOF electrocatalyst. The MIL-101(Fe/Co) was prepared by utilizing mixed-valence Fe (III) and Co (II) as metal nodes and terephthalic acid as ligands with a simple hydrothermal method and characterized by SEM, TEM, XRD, FTIR, and XPS. Electrochemical measurements such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) showed that bimetallic MIL-101(Fe/Co) had the faster electron transfer, larger electroactive area, and higher electrocatalytic activity compared with their monometallic counterparts due to the strong synergistic effect between bimetals.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Centre for Research in Molecular Modeling, Concordia University, Montreal, Canada.
The capture of toxic chemicals such as NH, HS, NO and SO is essential due to the tremendous threats they pose to human health and the environment. The M-MOF-74 family of metal-organic frameworks has recently gained attention as a promising category of sorbent materials for the capture of toxic chemicals; however, no clear and comprehensive relationships have been established between the capability of the M-MOF-74 to capture all target toxic chemicals and their properties such as the nature and magnetic state of the metal sites. Density-functional theory (DFT) is employed to investigate the binding energy of target molecules on M-MOF-74 with different metals including Mg, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
Department of Chemical Engineering and Technology, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China. Electronic address:
The investigation of highly efficient metal-organic framework (MOF) electrocatalysts represents a pivotal challenge in enhancing the overall efficiency of water electrolysis. In this study, we present a co-liganding method based on molecular regulation, in which succinic (s.a), adipic (a.
View Article and Find Full Text PDFWater Res
January 2025
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
Periodate (PI, IO)-based advanced oxidation processes (AOPs) provide an economical and sustainable approach to alleviate water pollution challenges. Developing efficient and stable activators for PI is the focus of current research. Herein, S/Fe-co-doped magnetic porous carbon material (S/Fe-ZIF-950) was prepared by introducing exogenous S atoms using Fe-doped zeolitic imidazolate framework-8 (Fe-ZIF-8) as a precursor, which showed the most superior performance (100 % within 10 min) in activating PI to remove p-chlorophenol (4-CP).
View Article and Find Full Text PDFChemistry
January 2025
School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
Strategies that can introduce catalytic auxiliary into electrocatalysts to boost the performance of electrocatalytic CO reduction reaction (CORR) are meaningful in exploring hybrid electrocatalytic systems. Here, a series of hybrid electrocatalysts (Cu NCs@MOF-545-M, M=Fe, Co and Ni) have been prepared by assembly Cu NCs with MOF-545-M (M=Fe, Co and Ni) and successfully applied in electrocatalytic CORR. In the obtained MOF-545-M (M=Fe, Co and Ni), the integration of Cu NCs with MOF-545-M (M=Fe, Co and Ni) can create a hybrid electrocatalytic system that enhances the charge transfer efficiency and electrocatalytic CORR activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!