A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecularly imprinted electrochemical sensor based on synergistic interaction of honeycomb-like Ni-MOF decorated with AgNPs and N-GQDs for ultra-sensitive detection of olaquindox in animal-origin food. | LitMetric

Olaquindox (OLA) in food from its illegal use possesses great harmful effects on humans, making it important to develop sensitive, inexpensive, and convenient methods for OLA detection. This study innovatively presented a molecularly imprinted electrochemical sensor based on the synergistic effects of nitrogen-doped graphene quantum dots (N-GQDs) and a nickel-based metal-organic framework functionalized with silver nanoparticles (Ag/Ni-MOF) for OLA detection. N-GQDs and Ag/Ni-MOF with unique honeycomb structures were sequentially modified on the glassy carbon electrode (GCE) surface to accelerate the electron transfer rate and increase the available region of the electrode. Molecularly imprinted polymers were further grown on the Ag/Ni-MOF/N-GQDs/GCE by electropolymerization to significantly enhance the selective recognition of OLA. The constructed sensor showed excellent performance for selective OLA determination, with a wide linear range (5-600 nmol·L) and exceedingly low detection limit (2.2 nmol·L). The sensor was successfully applied to detect OLA in animal-origin food with satisfactory recoveries (96.22-101.02%).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.136001DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
12
imprinted electrochemical
8
electrochemical sensor
8
sensor based
8
based synergistic
8
animal-origin food
8
ola detection
8
ola
6
sensor
4
synergistic interaction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!