3D Video Tracking Technology in the Assessment of Orofacial Impairments in Neurological Disease: Clinical Validation.

J Speech Lang Hear Res

Department of Speech-Language Pathology, Rehabilitation Sciences Institute, University of Toronto, Ontario, Canada.

Published: August 2023

Purpose: This study sought to determine whether clinically interpretable kinematic features extracted automatically from three-dimensional (3D) videos were correlated with corresponding perceptual clinical orofacial ratings in individuals with orofacial impairments due to neurological disorders.

Method: 45 participants (19 diagnosed with motor neuron diseases [MNDs] and 26 poststroke) performed two nonspeech tasks (mouth opening and lip spreading) and one speech task (repetition of a sentence "Buy Bobby a Puppy") while being video-recorded in a standardized lab setting. The color video recordings of participants were assessed by an expert clinician-a speech language pathologist-on the severity of three orofacial measures: symmetry, range of motion (ROM), and speed. Clinically interpretable 3D kinematic features, linked to symmetry, ROM, and speed, were automatically extracted from video recordings, using a deep facial landmark detection and tracking algorithm for each of the three tasks. Spearman correlations were used to identify features that were significantly correlated ( value < .05) with their corresponding clinical scores. Clinically significant kinematic features were then used in the subsequent multivariate regression models to predict the overall orofacial impairment severity score.

Results: Several kinematic features extracted from 3D video recordings were associated with their corresponding perceptual clinical scores, indicating clinical validity of these automatically derived measures. Different patterns of significant features were observed between MND and poststroke groups; these differences were aligned with clinical expectations in both cases.

Conclusions: The results show that kinematic features extracted automatically from simple clinical tasks can capture characteristics used by clinicians during assessments. These findings support the clinical validity of video-based automatic extraction of kinematic features.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10555456PMC
http://dx.doi.org/10.1044/2023_JSLHR-22-00321DOI Listing

Publication Analysis

Top Keywords

kinematic features
24
features extracted
12
video recordings
12
orofacial impairments
8
impairments neurological
8
clinical
8
clinically interpretable
8
interpretable kinematic
8
features
8
extracted automatically
8

Similar Publications

Blood clots (BCs) play a crucial biomechanical role in promoting osteogenesis and regulating mesenchymal stem cell (MSC) function and fate. This study shows that BC formation enhances MSC osteogenesis by activating Itgb1/Fak-mediated focal adhesion and subsequent Runx2-mediated bone regeneration. Notably, BC viscoelasticity regulates this effect by modulating Runx2 nuclear translocation.

View Article and Find Full Text PDF

Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.

View Article and Find Full Text PDF

: This study aimed to explore how the microarchitectural features of lacunae and perilacunar zones impact the biomechanics of microdamage accumulation in cortical bone, crucial for understanding bone disorders' pathogenesis and developing preventive measures. : Utilizing the phase field finite element method, the study analyzed three bone unit models with varying microarchitecture: one without lacunae, one with lacunae and one including perilacunar zones, to assess their effects on cortical bone's biomechanical properties. : The presence of lacunae was found to increase microcrack initiation risk, acting as nucleation points and accelerating microcrack propagation.

View Article and Find Full Text PDF

Abnormal eye movements occur early in the course of disease in many ataxias. However, clinical assessments of oculomotor function lack precision, limiting sensitivity for measuring progression and the ability to detect subtle early signs. Quantitative assessment of eye movements during everyday behaviors such as reading has potential to overcome these limitations and produce functionally relevant measures.

View Article and Find Full Text PDF

In bioneuronal systems, the synergistic interaction between mechanosensitive piezo channels and neuronal synapses can convert and transmit pressure signals into complex temporal plastic pulses with excitatory and inhibitory features. However, existing artificial tactile neuromorphic systems struggle to replicate the elaborate temporal plasticity observed between excitatory and inhibitory features in biological systems, which is critical for the biomimetic processing and memorizing of tactile information. Here we demonstrate a mechano-gated iontronic piezomemristor with programmable temporal-tactile plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!