This study explores the relationship between the resource productivity and environmental degradation in European Union-27 countries. This study tests this relationship in context of high, moderate, and low material footprint sub-samples; these samples are formed utilizing the expectation-maximization machine learning algorithm. Using the panel data set of EU-27 countries from 2000 to 2020, linear and non-linear autoregressive distributed lag (ARDL) are applied for the symmetric and asymmetric evidence and to test environmental Kuznets curve (EKC), linear ARDL with the quadratic function is included. Results of the symmetric relationship find evidence of resource productivity's impact on the environmental degradation. In full sample of EU-27, both symmetric and asymmetric methods show that the short run and long run increase of resource productivity lower the environmental degradation. Only long run asymmetric relationship in high material footprint subsamples supports that the resource productivity controls environmental degradation. Results of moderate material footprint sub-sample are mixed. However, low material footprint countries show that resource productivity in long run controls the environmental degradation in symmetry and only positive resource controls productivity in short run in asymmetric relationship. The reason for mixed results is the quadratic nature of sub-samples. EKC hypothesis is validated in moderate and low material footprint sub-samples. This research has many policy implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163142PMC
http://dx.doi.org/10.1007/s11356-023-26631-zDOI Listing

Publication Analysis

Top Keywords

environmental degradation
24
material footprint
24
resource productivity
20
low material
12
productivity environmental
8
eu-27 countries
8
moderate low
8
footprint sub-samples
8
symmetric asymmetric
8
asymmetric relationship
8

Similar Publications

Background: TAR-DNA-binding protein 43 (TDP43), is a pathologic marker in neurodegenerative diseases including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The aggregation of TDP-43, a crucial RNA-binding protein, is a consequence of post-translational modifications (PTMs) that disrupt its normal function. PTMs such as phosphorylation and ubiquitination contribute to the aberrant accumulation of TDP-43 aggregates, leading to neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).

View Article and Find Full Text PDF

Gut-derived lactic acid enhances tryptophan to 5-hydroxytryptamine in regulation of anxiety via .

Gut Microbes

December 2025

MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

The gut microbiota plays a pivotal role in anxiety regulation through pathways involving neurotransmitter production, immune signaling, and metabolic interactions. Among these, gut-derived serotonin (5-hydroxytryptamine, 5-HT), synthesized from tryptophan metabolism, has been identified as a key mediator. However, it remains unclear whether specific microbial factors regulate tryptophan metabolism to influence 5-HT production and anxiety regulation.

View Article and Find Full Text PDF

Background: Spousal care partners to people with dementia (PWD) have a higher rate of depression and anxiety when compared to similar age controls. Previous studies have suggested a role of gut microbiota in the pathophysiology of neuropsychiatric symptoms and Alzheimer's disease (AD). Thus, our study aims to: (1) determine the presence and severity of depression and anxiety in care partners of PWD, and (2) determine the concentrations of short chain fatty acids (SCFA), which are mainly produced by gut microbiota and are important in mediating gut microbiota effects, in the blood of care partners of PWD.

View Article and Find Full Text PDF

Effective therapies for cognitive impairments induced by brain irradiation are currently lacking. This study investigated the therapeutic potential of hyperbaric oxygen therapy (HBOT) for radiation-induced brain injury in a randomized controlled experimental model using adult male Wistar rats. Adult male Wistar rats were divided into four experimental groups: 0 Gy whole brain radiotherapy (WBRT) with normal baric air (NBA) treatment, 0 Gy WBRT with HBOT, 10 Gy WBRT with NBA, and 10 Gy WBRT with HBOT.

View Article and Find Full Text PDF

Small proteins (≤100 amino acids) play important roles across all life forms, ranging from unicellular bacteria to higher organisms. In this study, we have developed SProtFP which is a machine learning-based method for functional annotation of prokaryotic small proteins into selected functional categories. SProtFP uses independent artificial neural networks (ANNs) trained using a combination of physicochemical descriptors for classifying small proteins into antitoxin type 2, bacteriocin, DNA-binding, metal-binding, ribosomal protein, RNA-binding, type 1 toxin and type 2 toxin proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!