Background: A significant gap exists in the translatability of small-animal models to human subjects. One important factor is poor laboratory models involving human tissue. Thus, the authors have created a viable postnatal human skin xenograft model using athymic mice.

Methods: Discarded human foreskins were collected following circumcision. All subcutaneous tissue was removed from these samples sterilely. Host CD-1 nude mice were then anesthetized, and dorsal skin was sterilized. A 1.2-cm-diameter, full-thickness section of dorsal skin was excised. The foreskin sample was then placed into the full-thickness defect in the host mice and sutured into place. Xenografts underwent dermal wounding using a 4-mm punch biopsy after engraftment. Xenografts were monitored for 14 days after wounding and then harvested.

Results: At 14 days postoperatively, all mice survived the procedure. Grossly, the xenograft wounds showed formation of a human scar at postoperative day 14. Hematoxylin and eosin and Masson trichome staining confirmed scar formation in the wounded human skin. Using a novel artificial intelligence algorithm using picrosirius red staining, scar formation was confirmed in human wounded skin compared with the unwounded skin. Histologically, CD31 + immunostaining confirmed vascularization of the xenograft. The xenograft exclusively showed human collagen type I, CD26 + , and human nuclear antigen in the human scar without any staining of these human markers in the murine skin.

Conclusion: The proposed model demonstrates wound healing to be a local response from tissue resident human fibroblasts and allows for reproducible evaluation of human skin wound repair in a preclinical model.

Clinical Relevance Statement: Radiation-induced fibrosis is a widely prevalent clinical phenomenon without a well-defined treatment at this time. This study will help establish a small-animal model to better understand and develop novel therapeutics to treat irradiated human skin.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PRS.0000000000010465DOI Listing

Publication Analysis

Top Keywords

human skin
20
human
15
skin
9
xenograft model
8
cd-1 nude
8
nude mice
8
skin wound
8
wound repair
8
dorsal skin
8
human scar
8

Similar Publications

E-commerce faces challenges such as content homogenization and high perceived risk among users. This paper aims to predict perceived risk in different contexts by analyzing review content and website information. Based on a dataset containing 262,752 online reviews, we employ the KeyBERT-TextCNN model to extract thematic features from the review content.

View Article and Find Full Text PDF

Primary effusion lymphoma (PEL) is a rare and aggressive B-cell lymphoma typically associated with human herpesvirus 8 (HHV-8) and Epstein-Barr virus infections. It classically presents as a malignant effusion in body cavities, but rarely presents with an extracavitary variant characterized by solid tumors in lymph nodes or extranodal sites such as the gastrointestinal tract, skin, lungs, and nervous system. This case report describes an unusual presentation of primary cutaneous extracavitary PEL in an HIV-positive patient that has only been reported in 8 cases previously.

View Article and Find Full Text PDF

Safety and clinical efficacy of modified tracer fixation technique in orthopedic robot-assisted percutaneous vertebroplasty for Kümmell's disease.

J Robot Surg

January 2025

Department of Orthopaedics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China.

The rising incidence of osteoporotic vertebral compression fractures (OVCF) has increased the demand for precise treatments like robot-assisted percutaneous vertebroplasty (PVP), especially for conditions like Kümmell's disease that require high surgical accuracy. However, the traditional tracer fixation method has certain limitations. This study aimed to compare the safety and clinical efficacy of a modified tracer fixation technique with the traditional fixation method in robot-assisted percutaneous vertebroplasty (PVP) for Kümmell's disease.

View Article and Find Full Text PDF

This study aimed to develop and validate a cost-effective, customizable patient-specific phantom for simulating external ventricular drain placement, combining image segmentation, 3-D printing and molding techniques. Two variations of the phantom were created based on patient MRI data, integrating a realistic skin layer with anatomical landmarks, a 3-D printed skull, an agarose polysaccharide gel brain, and a ventricular cavity. To validate the phantom, 15 neurosurgeons, residents, and physician assistants performed 30 EVD placements.

View Article and Find Full Text PDF

Background: The role of local infiltration anesthesia (LIA) in knee surgery is significant. LIA can be more potent than a nerve block, but without the downsides. A wide range of agents are used for LIA, including some off-label medications such as dexmedetomidine and ropivacaine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!