Introduction: Electroencephalogram (EEG) is an important investigational tool that is widely used in the hospital settings for numerous indications. The aim was to determine factors associated with abnormal EEG and its clinical correlations in hospitalised patients.

Materials And Methods: Patients with at least one EEG recording were recruited. The EEG and clinical data were collated.

Results: Two hundred and fifty patients underwent EEG and 154 (61.6%) were found to have abnormal EEG. The abnormal changes consist of theta activity (79,31.6%), delta activity (20, 8%), focal discharges (41,16.4%) and generalised discharges (14, 5.6%). Older patients had 3.481 higher risk for EEG abnormalities, p=0.001. Patients who had focal seizures had 2.240 higher risk of having EEG abnormalities, p<0.001. Low protein level was a risk for EEG abnormalities, p=0.003.

Conclusion: This study emphasised that an abnormal EEG remains a useful tool in determining the likelihood for seizures in a hospital setting. The risk factors for EEG abnormality in hospitalised patients were age, focal seizures and low protein level. The EEG may have an important role as part of the workup in hospitalised patients to aid the clinician to tailor their management in a holistic manner.

Download full-text PDF

Source

Publication Analysis

Top Keywords

eeg
8
abnormal eeg
8
eeg clinical
8
higher risk
8
risk eeg
8
eeg abnormalities
8
patients
5
characteristics electroencephalogram
4
electroencephalogram changes
4
changes correlation
4

Similar Publications

Attention-Based PSO-LSTM for Emotion Estimation Using EEG.

Sensors (Basel)

December 2024

Department of Information and Electronic Engineering, International Hellenic University, 57001 Thessaloniki, Greece.

Recent advances in emotion recognition through Artificial Intelligence (AI) have demonstrated potential applications in various fields (e.g., healthcare, advertising, and driving technology), with electroencephalogram (EEG)-based approaches demonstrating superior accuracy compared to facial or vocal methods due to their resistance to intentional manipulation.

View Article and Find Full Text PDF

Systematic Review of EEG-Based Imagined Speech Classification Methods.

Sensors (Basel)

December 2024

Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

This systematic review examines EEG-based imagined speech classification, emphasizing directional words essential for development in the brain-computer interface (BCI). This study employed a structured methodology to analyze approaches using public datasets, ensuring systematic evaluation and validation of results. This review highlights the feature extraction techniques that are pivotal to classification performance.

View Article and Find Full Text PDF

Monitoring cerebral oxygenation and metabolism, using a combination of invasive and non-invasive sensors, is vital due to frequent disruptions in hemodynamic regulation across various diseases. These sensors generate continuous high-frequency data streams, including intracranial pressure (ICP) and cerebral perfusion pressure (CPP), providing real-time insights into cerebral function. Analyzing these signals is crucial for understanding complex brain processes, identifying subtle patterns, and detecting anomalies.

View Article and Find Full Text PDF

One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs.

View Article and Find Full Text PDF

The precise localization of epileptic foci with the help of EEG or iEEG signals is still a clinical challenge with current methodology, especially if the foci are not close to individual electrodes. On the research side, dipole reconstruction for focus localization is a topic of recent and current developments. Relatively low numbers of recording electrodes cause ill-posed and ill-conditioned problems in the inversion of lead-field matrices to calculate the focus location.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!