A SmNiO memristor with artificial synapse function properties and the implementation of Boolean logic circuits.

Nanoscale

School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding 071002, P. R. China.

Published: April 2023

Recently, with the improvement of the requirements for fast and efficient data processing in the era of artificial intelligence, new forms of computing have come into being. Developing memristor devices that can simulate the brain's computing neutral network is particularly important for applications in the field of artificial intelligence. However, there are still some challenges in their biological function simulation and related circuit design. In this work, a memristor based on perovskite rare earth nickelates (RNiO) is presented with excellent electrical performance, including three orders of magnitude higher current switching ratio and good repeatability, and can achieve bidirectional conductance regulation like weight modulation in bio-synapse. Furthermore, the synaptic like characteristics of the device have been mimicked successfully, such as excitatory postsynaptic current (EPSC), paired pulse facilitation (PPF), classical double pulse spike time-dependent plasticity (classical pair-STDP), triplet spike time-dependent plasticity (triplet-STDP), short-term plasticity (STP), long-term plasticity (LTP), the refractory period phenomenon and learning and forgetting rules. In particular, two synaptic devices and a leaky integrate-and-fire (LIF) neuron device are used to achieve a logic gate circuit to realize "AND", "OR", and "NOT" functions. The device paves the way for the application of high-density circuits in artificial intelligence.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr06044bDOI Listing

Publication Analysis

Top Keywords

artificial intelligence
12
spike time-dependent
8
time-dependent plasticity
8
smnio memristor
4
artificial
4
memristor artificial
4
artificial synapse
4
synapse function
4
function properties
4
properties implementation
4

Similar Publications

Weighted Echo State Graph Neural Networks Based on Robust and Epitaxial Film Memristors.

Adv Sci (Weinh)

January 2025

College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.

Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.

View Article and Find Full Text PDF

The COVID-19 pandemic provided an ideal scenario for studying the care of the elderly population, we implemented a tool named the Geriatric Measure (GM) tool to determine the severity and need for hospitalization. The objective of the study is to evaluate if the results of a brief Geriatric Measure tool are associated with mortality and other outcomes among older adults with COVID-19 treated in the emergency department. Retrospective observational cohort study.

View Article and Find Full Text PDF

Machine learning techniques for non-destructive estimation of plum fruit weight.

Sci Rep

January 2025

Crop and Horticultural Science Research Department, Mazandaran Agricultural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tajrish, Iran.

Plum fruit fresh weight (FW) estimation is crucial for various agricultural practices, including yield prediction, quality control, and market pricing. Traditional methods for estimating fruit weight are often destructive, time-consuming, and labor-intensive. In this study, we addressed the problem of predicting plum FW using artificial intelligence (AI) methods based on fruit dimensions.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.

View Article and Find Full Text PDF

Graph data is essential for modeling complex relationships among entities. Graph Neural Networks (GNNs) have demonstrated effectiveness in processing low-order undirected graph data; however, in complex directed graphs, relationships between nodes extend beyond first-order connections and encompass higher-order relationships. Additionally, the asymmetry introduced by edge directionality further complicates node interactions, presenting greater challenges for extracting node information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!