Cobalt-based spinel oxides are considered potential candidates for the oxygen evolution reaction (OER) due to their abundant valence changes and promising electrochemical activity, but their low intrinsic activity hinders their practical applications. Herein, we synthesize a series of CoCeMO (M = Zn, Ni, Ru, Er, Mg, Mn, Sn) derived from CoCeM coordination-driven self-assembled aggregates (CDSAAs) using a general ion exchange and subsequent calcination method. Interestingly, CoCeMO exhibit different morphologies from porous nanospheres, particle-stacked nanospheres, to hollow nanospheres as the third metal element is altered. Markedly, CoCeZnO porous nanospheres (PNs) exhibit the best OER performance. The XPS results reveal that the existence of CeO and Zn ions significantly increased the Co/Co ratio and the content of oxygen vacancies in CoO. Furthermore, Co can be used as highly reactive sites to form CoOOH and the high content of oxygen vacancies can optimize the oxygen-containing intermediate adsorption energy, both of which can effectively improve the OER performance. Therefore, well-designed CoCeZnO PNs demonstrate high OER activity with a lower overpotential ( = 333 mV) than that of commercial RuO (344 mV) in 10 mA cm, a Tafel slope of 98 mV dec, and a long-term durability of 45 h. This work may provide some inspiration for the design of trimetallic oxide nanomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt00318c | DOI Listing |
Small
January 2025
Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.
The development of efficient catalysts for water electrolysis is crucial for advancing the low-carbon transition and addressing the energy crisis. This work involves the fabrication of graphene-based catalysts for the oxygen evolution reaction (OER) by integrating NiFe-LDH and PbO onto graphene using plasma treatment. The plasma process takes only 30 min.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
The supported RuO catalysts are known for their synergistic and interfacial effects, which significantly enhance both catalytic activity and stability. However, polymer-supported RuO catalysts have received limited attention due to challenges associated with poor conductivity. In this study, we successfully synthesized the RuO-polytetrafluoroethylene (PTFE) catalyst via a facile annealing process.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
Plants in space face unique challenges, including chronic ionizing radiation and reduced gravity, which affect their growth and functionality. Understanding these impacts is essential to determine the cultivation conditions and protective shielding needs in future space greenhouses. While certain doses of ionizing radiation may enhance crop yield and quality, providing "functional food" rich in bioactive compounds, to support astronaut health, the combined effects of radiation and reduced gravity are still unclear, with potential additive, synergistic, or antagonistic interactions.
View Article and Find Full Text PDFMolecules
January 2025
School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China.
Water electrolysis is a promising path to the industrialization development of hydrogen energy. The exploitation of high-efficiency and inexpensive catalysts become important to the mass use of water decomposition. Ni-based nanomaterials have exhibited great potential for the catalysis of water splitting, which have attracted the attention of researchers around the world.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!