Primary Sjögren's syndrome (pSS) is a chronic inflammatory autoimmune disease, which mainly damages patients' exocrine glands. Sensitive early diagnostic indicators and effective treatments for pSS are lacking. Using machine learning methods to find diagnostic markers and effective therapeutic ways for pSS is of great significance. In our study, first, 1643 differentially expressed genes (DEGs; 737 were upregulated and 906 were downregulated) were ultimately screened out and analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes based on the datasets from the Gene Expression Omnibus. Then, support vector machine, least absolute shrinkage and selection operator regression, random forest, and weighted correlation network analysis were used to screen out feature genes from DEGs. Subsequently, the intersection of the feature genes was taken to screen 10 genes as hub genes. Meanwhile, the analysis of the diagnostic efficiency of 10 hub genes showed their good diagnostic value for pSS, which was validated through immunohistochemistry on the paraffin sections of the labial gland. Subsequently, a multi-factor regulatory network and correlation analysis of hub genes were performed, and the results showed that ELAVL1 and IGF1R were positively correlated with each other but both negatively correlated with the other seven hub genes. Moreover, several meaningful results were detected through the immune infiltration landscape. Finally, we used molecular docking to screen potential therapeutic compounds of pSS based on the hub genes. We found that the small molecules DB08006, DB08036, and DB15308 had good docking scores with ELAVL1 and IGF1R simultaneously. Our study might provide effective diagnostic biomarkers and new therapeutic ideas for pSS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243915PMC
http://dx.doi.org/10.1093/cei/uxad037DOI Listing

Publication Analysis

Top Keywords

hub genes
20
genes
10
diagnostic markers
8
potential therapeutic
8
sjögren's syndrome
8
machine learning
8
molecular docking
8
genes degs
8
feature genes
8
elavl1 igf1r
8

Similar Publications

Introduction: Oncolytic herpes simplex viruses (oHSVs) are a type of biotherapeutic utilized in cancer therapy due to their ability to selectively infect and destroy tumor cells without harming healthy cells. We sought to investigate the functional genomic response and altered metabolic pathways of human cancer cells to oHSV-1 infection and to elucidate the influence of these responses on the relationship between the virus and the cancer cells.

Methods: Two datasets containing gene expression profiles of tumor cells infected with oHSV-1 (G207) and non-infected cells from the Gene Expression Omnibus (GEO) database were processed and normalized using the R software.

View Article and Find Full Text PDF

Identification of crucial pathways and genes linked to endoplasmic reticulum stress in PCOS through combined bioinformatic analysis.

Front Mol Biosci

January 2025

Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.

Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic condition impacting millions of women worldwide. This study sought to identify granulosa cell endoplasmic reticulum stress (GCERS)-related differentially expressed genes (DEGs) between women with PCOS and those without PCOS using bioinformatics and to investigate the related molecular mechanisms.

Methods: Two datasets were downloaded from GEO and analysed using the limma package to identify DEGs in two groups-PCOS and normal granulosa cells.

View Article and Find Full Text PDF

The role of lnc‑MAPKAPK5‑AS1 in immune cell infiltration in hepatocellular carcinoma: Bioinformatics analysis and validation.

Oncol Lett

March 2025

Guangzhou Center for Disease Control and Prevention, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China.

The oncogenic and tumor suppressor roles of lnc-MAPKAPK5-AS1 in multiple cancers suggest its complexity in modulating cancer progression. The expression and promoter methylation level of lnc-MAPKAPK5-AS1 in hepatocellular carcinoma (HCC) was investigated through data mining from The Cancer Genome Atlas and Gene Expression Omnibus and its significance in prognosis and immunity was explored. lnc-MAPKAPK5-AS1 was co-expressed with its protein-coding gene MAPKAPK5 in HCC and exhibited upregulation in HCC tissues as a result of hypomethylation of its promoter region.

View Article and Find Full Text PDF

In the rapid climate change scenario and subsequent rainfall patterns, drought has emerged as a bottleneck for crop production across crops, especially in rainfed rice. Drought significantly affects the development and production of most modern rice cultivars. Thus, recent breeding efforts have aimed to integrate drought tolerance traits in existing rice varieties through conventional and molecular approaches.

View Article and Find Full Text PDF

Fine particulate matter (PM), an atmospheric pollutant that settles deep in the respiratory tract, is highly harmful to human health. Despite its well-known impact on lung function and its ability to exacerbate asthma, the molecular basis of this effect is not fully understood. This integrated transcriptomic and epigenomic data analysis from publicly available datasets aimed to determine the impact of PM exposure and its association with asthma in human airway epithelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!