Machine learning (ML) models have received increasing attention as a new approach for the virtual screening of organic materials. Although some ML models trained on large databases have achieved high prediction accuracy, the application of ML to certain types of organic materials is limited by the small amount of available data. On the other hand, metalloporphyrins and porphyrins (MpPs) have received increasing attention as potential photocatalysts, and recent studies have found that both HOMO/LUMO energy levels and energy gaps are important factors controlling the MpP photocatalysts. Since the training data of MpPs are insufficient and limited to porphyrin-based dyes, in this study, we proposed a deep transfer learning approach to rapidly predict the HOMO/LUMO energy levels and energy gaps of MpPs. To complement the open-source Porphyrin-based Dyes Database (PBDD), we curated a new database, the Metalloporphyrins and Porphyrins Database (MpPD), in which MpPs were specifically designed as potential photocatalysts and the HOMO/LUMO energies were calculated by advanced DFT functionals. We proposed PorphyBERT, a BERT-based regression model that was pre-trained with PBDD and fine-tuned with MpPD. The model performed satisfactorily in predicting HOMO and LUMO energies and energy gap with RMSEs of 0.0955, 0.0988, and 0.0787 eV and MAEs of 0.0774, 0.0824, and 0.0549 eV. Furthermore, due to its unique unsupervised pre-training phase, the model is not affected by the difference in computational functionals between pre-training and fine-tuning databases. Finally, we recommended 12 MpPs as potential photocatalysts for CO reduction with out-of-sample model predictions of energy gaps close to the values calculated by DFT.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp00917cDOI Listing

Publication Analysis

Top Keywords

organic materials
12
potential photocatalysts
12
energy gaps
12
deep transfer
8
transfer learning
8
received increasing
8
increasing attention
8
metalloporphyrins porphyrins
8
homo/lumo energy
8
energy levels
8

Similar Publications

The Crimean Congo virus has been reported to be a part of the spherical RNA-enveloped viruses from the Bunyaviridae family. Crimean Congo fever (CCHF) is a fatal disease with having fatality rate of up to 40%. It is declared endemic by the World Health Organization.

View Article and Find Full Text PDF

Transforming an azaarene into the spine of fusedbicyclics via cycloaddition-induced scaffold hopping of 5-Hydroxypyrazoles.

Nat Commun

December 2024

National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China.

Skeleton editing for heteroarenes, especially pyrazoles, is challenging and remains scarce because these non-strained aromatics exhibit inert reactivities, making them relatively inactive for performing a dearomatization/cleavage sequence. Here, we disclose a cycloaddition-induced scaffold hopping of 5-hydroxypyrazoles to access the pyrazolopyridopyridazin-6-one skeleton through a single-operation protocol. By converting a five-membered aza-arene into a five-unit spine of a 6/6 fused-bicyclic, this work unlocks a ring-opening reactivity of the pyrazole core that involves a formal C = N bond cleavage while retaining the highly reactive N-N bond in the resulting product.

View Article and Find Full Text PDF

Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).

View Article and Find Full Text PDF

Spin-polarized lasing in manganese doped perovskite microcrystals.

Nat Commun

December 2024

Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Spin-polarized lasers have demonstrated many superiorities over conventional lasers in both performance and functionalities. Hybrid organic-inorganic perovskites are emerging spintronic materials with great potential for advancing spin-polarized laser technology. However, the rapid carrier spin relaxation process in hybrid perovskites presents a major bottleneck for spin-polarized lasing.

View Article and Find Full Text PDF

Ultralow k covalent organic frameworks enabling high fidelity signal transmission and high temperature electromechanical sensing.

Nat Commun

December 2024

Key Laboratory of Advanced Polymeric Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, P. R. China.

As integrated circuits have developed towards the direction of complexity and miniaturization, there is an urgent need for low dielectric constant materials to effectively realize high-fidelity signal transmission. However, there remains a challenge to achieve ultralow dielectric constant and ultralow dielectric loss over a wide temperature range, not to mention having excellent thermal conductivity and processability concurrently. We herein prepare dual-linker freestanding covalent organic framework films with tailorable fluorine content via interfacial polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!