Magnesium, the most abundant divalent cation in cells, catalyzes RNA cleavage but also promotes RNA folding. Because folding can protect RNA from cleavage, we predicted a 'Goldilocks landscape', with local maximum in RNA lifetime at Mg2+ concentrations required for folding. Here, we use simulation and experiment to discover an innate and sophisticated mechanism of control of RNA lifetime. By simulation we characterized RNA Goldilocks landscapes and their dependence on cleavage and folding parameters. Experiments with yeast tRNAPhe and the Tetrahymena ribozyme P4-P6 domain show that structured RNAs can inhabit Goldilocks peaks. The Goldilocks peaks are tunable by differences in folded and unfolded cleavage rate constants, Mg2+ binding cooperativity, and Mg2+ affinity. Different folding and cleavage parameters produce Goldilocks landscapes with a variety of features. Goldilocks behavior allows ultrafine control of RNA chemical lifetime, whereas non-folding RNAs do not display Goldilocks peaks of protection. In sum, the effects of Mg2+ on RNA persistence are expected to be pleomorphic, both protecting and degrading RNA. In evolutionary context, Goldilocks behavior may have been a selectable trait of RNA in an early Earth environment containing Mg2+ and other metals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164553PMC
http://dx.doi.org/10.1093/nar/gkad124DOI Listing

Publication Analysis

Top Keywords

goldilocks peaks
12
rna
10
goldilocks
8
rna cleavage
8
rna lifetime
8
control rna
8
goldilocks landscapes
8
goldilocks behavior
8
mg2+
6
cleavage
5

Similar Publications

Magnesium, the most abundant divalent cation in cells, catalyzes RNA cleavage but also promotes RNA folding. Because folding can protect RNA from cleavage, we predicted a 'Goldilocks landscape', with local maximum in RNA lifetime at Mg2+ concentrations required for folding. Here, we use simulation and experiment to discover an innate and sophisticated mechanism of control of RNA lifetime.

View Article and Find Full Text PDF

Understanding energy transport in quantum systems is crucial for an understanding of light-harvesting in nature, and for the creation of new quantum technologies. Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport (ENAQT) as a widespread phenomenon occurring in biological and artificial systems. That work has been primarily focused on several 'canonical' structures, from simple chains, rings and crystals of varying dimensions, to well-studied light-harvesting complexes.

View Article and Find Full Text PDF

As screens have become ubiquitous in modern-day society, investigating the effects of high screen time on mental health is highly warranted. In the past decade, many studies have determined that higher levels of screen time engagement are associated with adverse mental health outcomes like anxiety and depression. However, the nature of the relationship between screen time and mental health requires further investigation to gain a better understanding of its mechanisms and properties.

View Article and Find Full Text PDF

Platinum anticancer drug DNA intrastrand cross-link models, LPt(d(G*pG*)) (G* = N7-platinated G residue, L = R(4)dt = bis-3,3'-(5,6-dialkyl)-1,2,4-triazine), and R = Me or Et), undergo slow Pt-N7 bond rotation. NMR evidence indicated four conformers (HH1, HH2, ΔHT1, and ΛHT2); these have different combinations of guanine base orientation (head-to-head, HH, or head-to-tail, HT) and sugar-phosphodiester backbone propagation relative to the 5'-G* (the same, 1, or opposite, 2, to the direction in B DNA). In previous work on LPt(d(G*pG*)) adducts, Pt-N7 rotation was too rapid to resolve conformers (small L with bulk similar to that in active drugs) or L was too bulky, allowing formation of only two or three conformers; ΛHT2 was not observed under normal conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!