The global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has reminded us of the importance of developing technologies to reduce and control bioaerosols in built environments. For bioaerosol control, the interaction between researchers and biomaterials is essential, and considering the characteristics of target pathogens is strongly required. Herein, we used enveloped viral aerosols, bacteriophage phi 6, for evaluating the performance of an electrostatic precipitator (ESP) with a copper-collecting plate (Cu-plate). In particular, bacteriophage phi 6 is an accessible enveloped virus that can be operated in biosafety level (BSL)-1 as a promising surrogate for SARS-CoV-2 with structural and morphological similarities. ESP with Cu-plate showed >91% of particle removal efficiency for viral aerosols at 77 cm/s of airflow face velocity. Moreover, the Cu-plate presented a potent antiviral performance of 5.4-relative log reduction within <15 min of contact. We believe that the evaluation of ESP performance using an aerosolized enveloped virus and plaque assay is invaluable. Our results provide essential information for the development of bioaerosol control technologies that will lead the post-corona era.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035800PMC
http://dx.doi.org/10.1016/j.eti.2023.103124DOI Listing

Publication Analysis

Top Keywords

bacteriophage phi
12
electrostatic precipitator
8
viral aerosols
8
performance evaluation
4
evaluation electrostatic
4
precipitator copper
4
copper plate
4
plate aerosolized
4
aerosolized sars-cov-2
4
sars-cov-2 surrogate
4

Similar Publications

Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism.

View Article and Find Full Text PDF

A novel framework for phage-host prediction via logical probability theory and network sparsification.

Brief Bioinform

November 2024

Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.

Bacterial resistance has emerged as one of the greatest threats to human health, and phages have shown tremendous potential in addressing the issue of drug-resistant bacteria by lysing host. The identification of phage-host interactions (PHI) is crucial for addressing bacterial infections. Some existing computational methods for predicting PHI are suboptimal in terms of prediction efficiency due to the limited types of available information.

View Article and Find Full Text PDF

Magnetic Carbon Bead-Based Concentration Method for SARS-CoV-2 Detection in Wastewater.

Food Environ Virol

December 2024

Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan.

Wastewater surveillance for pathogens is important to monitor disease trends within communities and maintain public health; thus, a quick and reliable protocol is needed to quantify pathogens present in wastewater. In this study, a method using a commercially available magnetic carbon bead-based kit, i.e.

View Article and Find Full Text PDF

The rise, fall, and resurgence of phage therapy for urinary tract infection.

EcoSal Plus

December 2024

Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.

In the face of rising antimicrobial resistance, bacteriophage therapy, also known as phage therapy, is seeing a resurgence as a potential treatment for bacterial infections including urinary tract infection (UTI). Primarily caused by uropathogenic , the 400 million UTI cases annually are major global healthcare burdens and a primary cause of antibiotic prescriptions in the outpatient setting. Phage therapy has several potential advantages over antibiotics including the ability to disrupt bacterial biofilms and synergize with antimicrobial treatments with minimal side effects or impacts on the microbiota.

View Article and Find Full Text PDF

Highly stable, antiviral, antibacterial cotton textiles via surface engineering.

Int J Biol Macromol

December 2024

School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China. Electronic address:

Article Synopsis
  • The pandemic has emphasized the need for textiles that can quickly inactivate pathogens to safeguard public health, particularly for cotton fabric.
  • A new cotton fabric, Co-CMC@Cu, was developed by treating cotton with carboxymethyl chitosan and loading it with copper ions, enabling rapid and effective pathogen inactivation with minimal copper usage.
  • This innovative fabric demonstrated impressive bacterial reduction rates of over 94% within 10 minutes and maintained high efficacy after 150 washes, making it a promising option for antiviral and antimicrobial applications during health crises.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!