Corn starch was plasticized by glycerol suspension in a twin-screw extruder, in which the glycerol suspension was the pre-dispersion mixture of glycerol with nano-SiO. Polylactide (PLA)/thermoplastic starch/SiO composites were obtained through melt-blending of PLA with thermoplastic starch/SiO in a twin-screw extruder. The nonisothermal crystallization behavior of PLA in the composites was investigated by differential scanning calorimetry. An interface of PLA with thermoplastic starch was proven to exist in the composites, and its interfacial bonding characteristics were analyzed. The interfacial binding energy stemming from PLA with thermoplastic starch exerts a significant influence on the segmental mobility of PLA at the interface. The segmental mobility of PLA is gradually improved by increasing interfacial binding energy, and consequently, the relative crystallinity on the interface exhibits progressive promotion. The Jeziorny model could well describe the primary crystallization of PLA in the composites. The extracted Avrami exponents based on the Jeziorny model indicate that the primary crystallization of PLA follows heterogeneous nucleation and three-dimensional growth. This study has revealed the intrinsic effect of the interfacial segmental mobility on the nonisothermal crystallization behavior of PLA in composites, which is of technological significance for its blow molding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10052106 | PMC |
http://dx.doi.org/10.3390/polym15061579 | DOI Listing |
Molecules
January 2025
Polymer Processing Division, Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland.
Packaging materials mainly serve the function of protecting products. The most common representative of this group is poly(ethylene terephthalate) (PET), which is not biodegradable and therefore, its waste might be burdensome to the environment. Thus, this work aims to develop outlines for obtaining polyester-based systems, preferably biobased ones, intended for the packaging industry and their detailed characterization.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Materials Engineering and Physics, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
Thermoplastic composites have garnered significant attention in various industries due to their exceptional properties, such as recyclability and ease of molding. In particular, biocomposites, which combine biopolymers with natural fibers, represent a promising alternative to petroleum-based materials, offering biodegradability and reduced environmental impact. However, there is limited knowledge regarding the efficacy of joining PLA/PHBV-based biocomposites modified with nanocrystalline cellulose (NCC) using vibration welding, which restricts their potential applications.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium. Electronic address:
The fabrication of objects with complex shape and geometry has been greatly facilitated with the advancements in additive manufacturing. While synthetic polymers like ABS and PLA have found widespread use in extrusion 3D printing, other biobased thermoplastics that are both biodegradable and biocompatible could offer strategic advantages over traditional synthetic materials. In this work dextran of low (20 kDa) and medium (40 kDa) molecular weight (MW) was modified with palmitic acid to obtain meltable polymers for extrusion 3D printing/fused deposition modeling additive manufacturing.
View Article and Find Full Text PDFACS Appl Polym Mater
December 2024
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.
The transition from insulator to electro-responsive has been successfully achieved by earlier studies for some inorganic materials by applying external stimuli that modify their 3D and/or electronic structures. In the case of insulating polymers, this transition is frequently accomplished by mixing them with other electroactive materials, even though a few physical treatments that induce suitable chemical modifications have also been reported. In this work, a smart approach based on the application of an electro-thermal reorientation process followed by a charged gas activation treatment has been developed for transforming insulating 3D printed polymers into electro-responsive materials.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Łódź, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!