Preparation of Thermoplastic Polyurethane/Multi-Walled Carbon Nanotubes Composite Foam with High Resilience Performance via Fused Filament Fabrication and CO Foaming Technique.

Polymers (Basel)

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.

Published: March 2023

Wearable flexible sensors with high sensitivity and wide detection range are applied in motion detection, medical diagnostic result and other fields, but poor resilience and hysteresis remain a challenge. In this study, a high-resilience foam sensor was prepared through a combination of additive manufacturing and green physical foaming method. The conductive filaments were prepared by using MWCNTs-modified TPU by the physical method of melt blending. Samples were prefabricated using the FFF printer and then saturated with CO in an autoclave before being removed and heated to foam. The composite foam effectively reduced residual strain, demonstrating the high resilience of the 3D-printed composite materials with a foam porous structure. The residual strain of the sample before foaming was >6% after a single cycle, and then gradually increased. The residual strain of the foamed samples is less than 5%. In addition, composite foam has high sensitivity and can monitor subtle pressure changes (0~40 kPa). The sensing performance of the composite foam was evaluated, and the current signal remained stable under different loading rates and small compression strains (2~5%). By using this highly resilient conductive composite material, a hierarchical shoe insole was designed that successfully detected human walking and running movements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054835PMC
http://dx.doi.org/10.3390/polym15061535DOI Listing

Publication Analysis

Top Keywords

composite foam
16
residual strain
12
foam high
8
high resilience
8
high sensitivity
8
foam
7
composite
6
preparation thermoplastic
4
thermoplastic polyurethane/multi-walled
4
polyurethane/multi-walled carbon
4

Similar Publications

Commercial 3D zinc foam anodes with high deposition space and ion permeation have shown great potential in aqueous ion batteries. However, the local accumulated stress from its high-curvature surface exacerbates the Zn dendrite issue, leading to poor reversibility. Herein, we have employed zincophilic N-doped carbon@Sn composites (N-C@Sn) as nano-fillings to effectively release the local stress of high curvature surface of 3D Zn foams toward dendrite-free anode in aqueous zinc ion battery (AZIB).

View Article and Find Full Text PDF

Manganese dioxide (MnO) is a well-known pseudocapacitive material that has been extensively studied and highly regarded, especially in supercapacitors, due to its remarkable surface redox behavior, leading to a high specific capacitance. However, its full potential is impeded by inherent characteristics such as its low electrical conductivity, dense morphology, and hindered ionic diffusion, resulting in limited rate capability in supercapacitors. Addressing this issue often requires complicated strategies and procedures, such as designing sophisticated composite architectures.

View Article and Find Full Text PDF

Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.

View Article and Find Full Text PDF

Microplastics (< 5 mm) are a diverse class of contaminants ranging in morphology, polymer type, and chemical cocktail. Microplastic toxicity can be driven by one or a combination of these characteristics. Most studies, however, evaluate the physical effect of the most commercially available polymers.

View Article and Find Full Text PDF

The use of black alder (BA) bark biomass in rigid polyurethane (PUR) foam compositions was the main task of investigation. Extractive compounds isolated from the bark through hot water extraction were used as precursors for bio-polyol synthesis via acid-free liquefaction with the polyether polyol Lupranol 3300 and through oxypropylation with propylene carbonate. The OH functionality and composition of the polyols were analyzed via wet chemistry and FTIR spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!