Alkaline anion exchange membranes (AAEMs) are an enabling component for next-generation electrochemical devices, including alkaline fuel cells, water and CO electrolyzers, and flow batteries. While commercial systems, notably fuel cells, have traditionally relied on proton-exchange membranes, hydroxide-ion conducting AAEMs hold promise as a method to reduce cost-per-device by enabling the use of non-platinum group electrodes and cell components. AAEMs have undergone significant material development over the past two decades; however, challenges remain in the areas of durability, water management, high temperature performance, and selectivity. In this review, we survey crosslinking as a tool capable of tuning AAEM properties. While crosslinking implementations vary, they generally result in reduced water uptake and increased transport selectivity and alkaline stability. We survey synthetic methodologies for incorporating crosslinks during AAEM fabrication and highlight necessary precautions for each approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051716 | PMC |
http://dx.doi.org/10.3390/polym15061534 | DOI Listing |
Glob Chang Biol
January 2025
Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.
Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land-atmosphere interactions. Moreover, changes in vegetation structure (e.
View Article and Find Full Text PDFSmall
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China.
Renewable energy-powered seawater electrolysis is a green and attractive technique for producing high-purity hydrogen. However, severe chlorideions (Cl) and their derivatives tend to corrode anodic catalysts at ampere-level current densities and hinder the application of seawater-to-H systems. Herein, a polycalmagite (PCM)-coated NiFe layered double hydroxide is presented on Ni foam (NiFe LDH@PCM/NF) that exhibits exceptional stability in alkaline seawater.
View Article and Find Full Text PDFZhongguo Xue Xi Chong Bing Fang Zhi Za Zhi
June 2024
Anqing Municipal Institute of Schistosomiasis Control, Anqing, Anhui 246001, China.
Objective: To investigate the distribution of snails in different water systems in Anqing City from 2016 to 2022, so as to provide insights into snail control in the city.
Methods: Snail survey data and distribution of water systems in snail-infested environments were collected from schistosomiasis-endemic areas of Anqing City from 2016 to 2022. The vector maps of towns and water systems in Anqing City were downloaded from National Geomatics Center of China.
Glob Chang Biol
January 2025
Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
Rapid warming in northern lands has led to increased ecosystem carbon uptake. It remains unclear, however, whether and how the beneficial effects of warming on carbon uptake will continue with climate change. Moreover, the role played by water stress in temperature control on ecosystem carbon uptake remains highly uncertain.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
Waterlogging (WL) is an important abiotic stress, severely affecting plant growth and development, inhibiting root respiration and degradation of chlorophyll, senescence of leaves and chlorosis leading to substantial yield loss. These intensities of yield losses generally depend on the duration of WL and crop growth stages. Maize being a dry land crop is particularly sensitive to WL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!