In this work, the synthesis and the stimuli-responsive self-assembly behavior of novel double-hydrophilic poly(2-(dimethylamino)ethyl methacrylate-co-(oligo ethylene glycol)methacrylate) random copolymers and their chemically modified derivatives are presented. The synthesis of P(DMAEMA-co-OEGMA) copolymers of different DMAEMA mass compositions was successfully conducted through RAFT polymerization, further followed by the hydrophilic/hydrophobic quaternization with methyl iodide (CHI), 1-iodohexane (CHI), and 1-iodododecane (CHI). The tertiary and quaternary amines are randomly arranged within the DMAEMA segment, responding thus to pH, temperature, and salt alterations in aqueous solutions. Light scattering techniques elucidated the intramolecular self-folding and intermolecular self-assembly of polymer chains of P(DMAEMA-co-OEGMA) copolymers upon exposure to different pHs and temperatures. Q(P(DMAEMA-co-OEGMA)) cationic polyelectrolytes demonstrated moderate response to pH, temperature, and ionic strength as a result of the permanent hydrophilic/hydrophobic profile, closely connected with the attached alkyl chains and the quaternization degree. Moreover, fluorescence spectroscopy measurements confirmed the internal micropolarity and the picture of the aggregate inner structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059824 | PMC |
http://dx.doi.org/10.3390/polym15061519 | DOI Listing |
Small
December 2024
College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China.
Plant volatile aldehydes (PVAs) such as cinnamaldehyde (Cin), citral (Cit), citronellal (Citr), and perillaldehyde (Per) have broad-spectrum antimicrobial activity and show great potential in agricultural sustainable production. However, most PVAs not only have very high volatility but also are easily degradable in environment, which seriously restricts their wide application. To address the inherent problems with PVAs, four prodrugs based on PVAs are fabricated by conjugating individually Cin, Cit, Citr, and Per to sodium bisulfite (Sod) through a simple addition reaction and subsequently self-assembled into nanoparticles (prodrug self-assemblies) in aqueous solutions.
View Article and Find Full Text PDFCommun Chem
December 2024
Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca, Spain.
Supramolecular self-assembly is an advanced approach for constructing ordered nanoscale architectures with broad applications. While the principles of supramolecular polymerization have been thoroughly explored in artificial small molecules, polymer transformations remain barely explored, likely due to the lack of suitable reference models presenting well-defined and reversible transitions between aggregates. In this study, we introduce a series of bisdendronized squaramides (SQs) 1-3, showcasing complex self-assembly behaviours involving four distinct aggregates, three different interaction patterns, and various thermodynamically controlled polymorph transformations.
View Article and Find Full Text PDFSoft Matter
December 2024
Organic Chemistry Institute, University of Münster, Münster, Germany.
Stimuli-responsive nanocontainers have emerged as promising vehicles to deliver molecular payloads into the cytosol of cells in a spatially, temporally and dosage-controlled manner. These nanocontainers respond to a specific type of stimulus such as a change in redox status, enzymatic activity, pH, heat, light, and others. In this work, we introduce photoresponsive nanocontainers based on the self-assembly of vesicles with surface-confined cyclodextrin-adamantane host-guest chemistry.
View Article and Find Full Text PDFAdv Mater
December 2024
CAS Center for Excellence in Nanoscience, Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
Nanocatalytic therapy holds significant promise in cancer treatment by exploiting the high oxidative stress within tumor cells. However, efficiently delivering nanocatalytic agents to tumor tissues and maximizing their catalytic activity in situ remain critical challenges. Morphology-adaptive delivery systems, capable of adjusting their physical form in response to physiological conditions, offer unique spatiotemporal control for navigating complex biological environments like the tumor microenvironment.
View Article and Find Full Text PDFSoft Matter
December 2024
Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
The self-assembly behaviors of rod-coil asymmetric diblock molecular brushes (ADMBs) bearing responsive side chains in a selective solvent are investigated dissipative particle dynamics simulations. By systematically varying the polymerization degree, copolymer concentration, and side chain length, several morphological phase diagrams were constructed. ADMB assemblies exhibited a rich variety of morphologies, including cylindrical micelles, spherical micelles, nanowires, polyhedral micelles, ellipsoid micelles, and large compound micelles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!