This study aims to examine the impact of the direct and indirect mixing techniques on the dispersion and homogeneity of magnesium oxide (MgO) and silver (Ag) nanoparticles (NPs) mixed with polymethylmethacrylate (PMMA). NPs were mixed with PMMA powder directly (non-ethanol-assisted) and indirectly (ethanol-assisted) with the aid of ethanol as solvent. X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscope (SEM) were used to evaluate the dispersion and homogeneity of MgO and Ag NPs within the PMMA-NPs nanocomposite matrix. Prepared discs of PMMA-MgO and PMMA-Ag nanocomposite were analyzed for dispersion and agglomeration by Stereo microscope. XRD showed that the average crystallite size of NPs within PMMA-NP nanocomposite powder was smaller in the case of ethanol-assisted mixing compared to non-ethanol-assisted mixing. Furthermore, EDX and SEM revealed good dispersion and homogeneity of both NPs on PMMA particles with ethanol-assisted mixing compared to the non-ethanol-assisted one. Again, the PMMA-MgO and PMMA-Ag nanocomposite discs were found to have better dispersion and no agglomeration with ethanol-assisted mixing when compared to the non-ethanol-assisted mixing technique. Ethanol-assisted mixing of MgO and Ag NPs with PMMA powder obtained better dispersion, better homogeneity, and no agglomeration of NPs within the PMMA-NP matrix.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10056507 | PMC |
http://dx.doi.org/10.3390/polym15061479 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.
Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.
View Article and Find Full Text PDFMater Horiz
January 2025
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China.
To achieve superior energy storage performance in dielectric polymer films, it is crucial to balance three key properties: high dielectric constant, high breakdown strength, and low dielectric loss. Here, we present the realization of ultrahigh efficiency and energy density in electrospun MBene/PEI composite films, achieved through an in-plane aligned doping pattern. The 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.
Polymer/ceramic nanocomposites integrated the advantages of both polymers and ceramics for a wide range of biomedical applications, such as bone tissue repair. Here, we reported triphasic poly(lactic--glycolic acid) (PLGA, LA/GA = 90:10) nanocomposites with improved dispersion of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles using a process that integrated the benefits of ultrasonic energy and dual asymmetric centrifugal mixing. We characterized the microstructure and composition of the nanocomposites and evaluated the effects of the HA/MgO ratios on degradation behavior and cell-material interactions.
View Article and Find Full Text PDFACS Omega
December 2024
Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
Heliyon
January 2025
Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
Lattice structures are an innovative solution to increase the strength-to-weight ratio of a structure. In this study, two polymeric hybrid lattice structures-"FRB" (a heterogenous structure which is indeed a BCC structure reinforced by FCC unit cells dispersed in a way to form a chessboard pattern in each layer) and the "Multifunctional" (a homogenous structure whose unit cells are a combination of FCC and BCC unit cells where their central nodes are connected)-are proposed, fabricated via liquid crystal display 3D printing technique, and their mechanical characteristics are evaluated under quasi-static loading, experimentally and numerically. The results indicate a 15.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!