Many composite manufacturing processes employ the consolidation of pre-impregnated preforms. However, in order to obtain adequate performance of the formed part, intimate contact and molecular diffusion across the different composites' preform layers must be ensured. The latter takes place as soon as the intimate contact occurs and the temperature remains high enough during the molecular reptation characteristic time. The former, in turn, depends on the applied compression force, the temperature and the composite rheology, which, during the processing, induce the flow of asperities, promoting the intimate contact. Thus, the initial roughness and its evolution during the process, become critical factors in the composite consolidation. Processing optimization and control are needed for an adequate model, enabling it to infer the consolidation degree from the material and process features. The parameters associated with the process are easily identifiable and measurable (e.g., temperature, compression force, process time, ⋯). The ones concerning the materials are also accessible; however, describing the surface roughness remains an issue. Usual statistical descriptors are too poor and, moreover, they are too far from the involved physics. The present paper focuses on the use of advanced descriptors out-performing usual statistical descriptors, in particular those based on the use of homology persistence (at the heart of the so-called topological data analysis-TDA), and their connection with fractional Brownian surfaces. The latter constitutes a performance surface generator able to represent the surface evolution all along the consolidation process, as the present paper emphasizes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057172 | PMC |
http://dx.doi.org/10.3390/polym15061449 | DOI Listing |
Chemphyschem
January 2025
Stony Brook University, Chemistry, Department of Chemistry, Stony Brook University, 11794, Stony Brook, UNITED STATES OF AMERICA.
For batteries to function effectively all active material must be accessible requiring both electron and ion transport to each particle. A common approach to generating the needed conductive network is the addition of carbon. An alternative approach is the electrochemically induced formation of conductive reaction products generated with intimate contact to the active material.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shandong university, School of Chemistry and Chemical Engineering, No 27, Shandananlu,, 250100, Jinan, CHINA.
Rational regulation of active hydrogen (*H) behavior is crucial for advancing electrocatalytic nitrate reduction reaction (NO3RR) to ammonia (NH3), yet in-depth understanding of the *H generation, transfer, and utilization remains ambiguous, and explorations for *H dynamic optimization are urgently needed. Herein we engineer a Ni3N nanosheet array intimately decorated with Cu nanoclusters (NF/Ni3N-Cu) for remarkably boosted NO3RR. From comprehensive experimental and theoretical investigations, the Ni3N moieties favors water dissociation to generate *H, and then *H can rapidly transfer to the Cu via unique reverse hydrogen spillover mediating interfacial Ni-N-Cu bridge bond, thus increasing *H coverage on the Cu site for subsequent deoxygenation/hydrogenation.
View Article and Find Full Text PDFJ Interpers Violence
January 2025
Queen's University, Kingston, ON, Canada.
Despite the substantial contact police have with survivors of violence against women, empirical accounts of survivors' perceptions of police use of body-worn cameras (BWCs) are limited. This study examines survivors' concerns with BWCs. We present qualitative data from semi-structured interviews with 33 survivors of intimate partner abuse and sexual assault.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
The rational design of heterojunction photocatalysts enabling fast transportation and efficient separation of photoexcited charge carriers is the key element in visible light-driven photocatalyst systems. Herein, we develop a unique Z-scheme heterojunction consisting of NiMoO microflowers (NMOF) and ZIF67, referred to as ZINM (composite), for the purpose of antibiotic degradation. ZIF67 was produced by a solution process, whereas NMOF was synthesized via coprecipitation with a glycine surfactant.
View Article and Find Full Text PDFNeurochem Int
January 2025
Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China. Electronic address:
The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!