Elastic Modulus of a Carbonized Layer on Polyurethane Treated by Ion-Plasma.

Polymers (Basel)

Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Science, Academician Korolev Street 1, 614013 Perm, Russia.

Published: March 2023

Nanocoatings formed by various plasma and chemical methods on the surface of polymeric materials have unique properties. However, the applicability of polymeric materials with nanocoatings under specific temperature and mechanical conditions depends on the physical and mechanical properties of the coating. The determination of Young's modulus is a task of paramount importance since it is widely used in calculations of the stress-strain state of structural elements and structures in general. Small thicknesses of nanocoatings limit the choice of methods for determining the modulus of elasticity. In this paper, we propose a method for determining the Young's modulus for a carbonized layer formed on a polyurethane substrate. For its implementation, the results of uniaxial tensile tests were used. This approach made it possible to obtain patterns of change in the Young's modulus of the carbonized layer depending on the intensity of ion-plasma treatment. These regularities were compared with regularities of changes in the molecular structure of the surface layer caused by plasma treatment of different intensity. The comparison was made on the basis of correlation analysis. Changes in the molecular structure of the coating were determined from the results of infrared Fourier spectroscopy (FTIR) and spectral ellipsometry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10051700PMC
http://dx.doi.org/10.3390/polym15061442DOI Listing

Publication Analysis

Top Keywords

modulus carbonized
12
carbonized layer
12
young's modulus
12
polymeric materials
8
changes molecular
8
molecular structure
8
elastic modulus
4
layer
4
layer polyurethane
4
polyurethane treated
4

Similar Publications

Engineering plastics are finding widespread applications across a broad temperature spectrum, with additive manufacturing (AM) having now become commonplace for producing aerospace-grade components from polymers. However, there is limited data available on the behavior of plastic AM parts exposed to elevated temperatures. This study focuses on investigating the tensile strength, tensile modulus and Poisson's ratio of parts manufactured using fused filament fabrication (FFF) and polyetheretherketone (PEEK) plastics doped with two additives: short carbon fibers (SCFs) and multi-wall carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10-15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels significantly increases their structural and mechanical characteristics and improves their thermal stability. Nanocomposites based on hydrogels are used in different technological processes of oil production: for conformance control, water shutoff in production wells, and well killing with loss circulation control.

View Article and Find Full Text PDF

Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal-organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte (GCSE-P/MCN-M) is successfully prepared via in situ gel reaction of a mixture containing multifunctional hybrid crosslinker (MCN-M), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), ethylene carbonate (EC), diethylene glycol monomethyl ether methacrylate (EGM) and polyethylene (vinylidene fluoridee) (PVDF).

View Article and Find Full Text PDF

In this work, a battery layup consisting of a poorly flammable ionic liquid electrolyte and a poly(vinylidene fluoride--hexafluoropropylene) (PVdF-HFP) thermoplastic has been developed along with composite anode and cathode electrodes. The developed gel electrolyte exhibits feasible ionic conductivity of about 1 mS/cm at 30 °C. State-of-the-art active electrode materials, i.

View Article and Find Full Text PDF

High-Performance Flexible Strain Sensors: The Role of In-Situ Cross-Linking and Interface Engineering in Liquid Metal-Carbon Nanotube-PDMS Composites.

ACS Appl Mater Interfaces

December 2024

Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212000, PR China.

The increasing demand for high-performance strain sensors has driven the development of innovative composite systems. This study focused on enhancing the performance of composites by integrating liquid metal, carbon nanotubes, and polydimethylsiloxane (PDMS) in an innovative approach that involved advanced interface engineering, filler synergy, and in situ cross-linking of PDMS in solution. Surface modification of liquid metal with allyl disulfide and hydrogen-containing polydimethylsiloxane significantly improved its stability and dispersion within the polymer matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!